On a certain type of characters of the idèle-class group of an algebraic number-field

Author(s):  
André Weil
2012 ◽  
Vol 11 (05) ◽  
pp. 1250087 ◽  
Author(s):  
ANDREAS PHILIPP

Let R be an order in an algebraic number field. If R is a principal order, then many explicit results on its arithmetic are available. Among others, R is half-factorial if and only if the class group of R has at most two elements. Much less is known for non-principal orders. Using a new semigroup theoretical approach, we study half-factoriality and further arithmetical properties for non-principal orders in algebraic number fields.


1984 ◽  
Vol 96 ◽  
pp. 83-94 ◽  
Author(s):  
Katsuya Miyake

Let k be an algebraic number field of finite degree. We denote the absolute class field of k by and the absolute ideal class group of k by Cl(k).


Integers ◽  
2009 ◽  
Vol 9 (4) ◽  
Author(s):  
Ashay Burungale

AbstractIt is shown that the conjugacy classes of integral matrices with a given irreducible characteristic polynomial is in bijection with the class group of a corresponding order in an algebraic number field.


1999 ◽  
Vol 156 ◽  
pp. 85-108
Author(s):  
Hiroshi Yamashita

Let p be a prime number. Let M be a finite Galois extension of a finite algebraic number field k. Suppose that M contains a primitive pth root of unity and that the p-Sylow subgroup of the Galois group G = Gal(M/k) is normal. Let K be the intermediate field corresponding to the p-Sylow subgroup. Let = Gal(K/k). The p-class group C of M is a module over the group ring ZpG, where Zp is the ring of p-adic integers. Let J be the Jacobson radical of ZpG. C/JC is a module over a semisimple artinian ring Fp. We study multiplicity of an irreducible representation Φ apperaring in C/JC and prove a formula giving this multiplicity partially. As application to this formula, we study a cyclotomic field M such that the minus part of C is cyclic as a ZpG-module and a CM-field M such that the plus part of C vanishes for odd p.To show the formula, we apply theory of central extensions of algebraic number field and study global and local Kummer duality between the genus group and the Kummer radical for the genus field with respect to M/K.


2010 ◽  
Vol 60 (6) ◽  
Author(s):  
Juraj Kostra

AbstractLet K be a tamely ramified cyclic algebraic number field of prime degree l. In the paper one-to-one correspondence between all orders of K with a normal basis and all ideals of K with a normal basis is given.


1973 ◽  
Vol 5 (5) ◽  
pp. 379-384 ◽  
Author(s):  
Donald Maurer

Sign in / Sign up

Export Citation Format

Share Document