scholarly journals On Weakly Tight Families

2012 ◽  
Vol 64 (6) ◽  
pp. 1378-1394 ◽  
Author(s):  
Dilip Raghavan ◽  
Juris Steprāns

Abstract Using ideas from Shelah's recent proof that a completely separable maximal almost disjoint family exists when 𝔠 < ℵω, we construct a weakly tight family under the hypothesis 𝔰 ≤ 𝔟 < ℵω. The case when 𝔰 < 𝔟 is handled in ZFC and does not require 𝔟 < ℵω, while an additional PCF type hypothesis, which holds when 𝔟 < ℵω is used to treat the case 𝔰 = 𝔟. The notion of a weakly tight family is a natural weakening of the well-studied notion of a Cohen indestructible maximal almost disjoint family. It was introduced by Hrušák and García Ferreira [8], who applied it to the Katétov order on almost disjoint families.

2004 ◽  
Vol 69 (1) ◽  
pp. 81-90 ◽  
Author(s):  
Jerry E. Vaughan

Let E be an infinite set, and [E]ω the set of all countably infinite subsets of E. A family ⊂ [E]ω is said to be almost disjoint (respectively, pairwise disjoint) provided for A, B ∈ , if A ≠ B then A ∩ B is finite (respectively, A ∩ B is empty). Moreover, an infinite family A is said to be a maximal almost disjoint family provided it is an infinite almost disjoint family not properly contained in any almost disjoint family. In this paper we are concerned with the following set of topological spaces defined from (maximal) almost disjoint families of infinite subsets of the natural numbers ω.


1995 ◽  
Vol 60 (3) ◽  
pp. 879-891 ◽  
Author(s):  
Thomas E. Leathrum

AbstractThe collection of branches (maximal linearly ordered sets of nodes) of the tree <ωω (ordered by inclusion) forms an almost disjoint family (of sets of nodes). This family is not maximal — for example, any level of the tree is almost disjoint from all of the branches. How many sets must be added to the family of branches to make it maximal? This question leads to a series of definitions and results: a set of nodes is off-branch if it is almost disjoint from every branch in the tree; an off-branch family is an almost disjoint family of off-branch sets; and is the minimum cardinality of a maximal off-branch family.Results concerning include: (in ZFC) , and (consistent with ZFC) is not equal to any of the standard small cardinal invariants or = 2ω. Most of these consistency results use standard forcing notions—for example, in the Cohen model.Many interesting open questions remain, though—for example, whether .


Author(s):  
Kevin P. Balanda

A family of κ-sized sets is said to be almost disjoint if each pair of sets from the family intersect in a set of power less than κ. Such an almost disjoint family ℋ is defined to be κ-maximally almost disjoint (κ-MAD) if |∪ℋ| = κ and each κ-sized subset of ∪ ℋ intersects some member of ℋ in a set of cardinality κ. A set T is called a representing set of a family if T ⊆ ∪ and T has non-empty intersection with each member of .


1999 ◽  
Vol 64 (4) ◽  
pp. 1803-1810 ◽  
Author(s):  
Yi Zhang

AbstractWe show that it is consistent with ZFC + ¬CH that there is a maximal cofinitary group (or, maximal almost disjoint group) G ≤ Sym(ω) such that G is a proper subset of an almost disjoint family A ⊆ Sym(ω) and ‖G‖ < ‖A‖. We also ask several questions in this area.


2014 ◽  
Vol 57 (1) ◽  
pp. 119-124 ◽  
Author(s):  
Heike Mildenberger ◽  
Dilip Raghavan ◽  
Juris Steprans

AbstractWe answer a question from Raghavan and Steprans by showing that Then we use this to construct a completely separable maximal almost disjoint family under a, partially answering a question of Shelah.


Author(s):  
Kevin P. Balanda

AbstractAssume GCH. Let κ, μ, Σ be cardinals, with κ infinite. Let be a family consisting of λ pairwise almost disjoint subsets of Σ each of size κ, whose union is Σ. In this note it is shown that for each μ with 1 ≤ μ ≤min(λ, Σ), there is a “large” almost disjoint family of μ-sized subsets of Σ, each member of having non-empty intersection with at least μ members of the family .


2019 ◽  
Vol 84 (4) ◽  
pp. 1590-1611
Author(s):  
IIAN B. SMYTHE

AbstractWe consider maximal almost disjoint families of block subspaces of countable vector spaces, focusing on questions of their size and definability. We prove that the minimum infinite cardinality of such a family cannot be decided in ZFC and that the “spectrum” of cardinalities of mad families of subspaces can be made arbitrarily large, in analogy to results for mad families on ω. We apply the author’s local Ramsey theory for vector spaces [32] to give partial results concerning their definability.


Sign in / Sign up

Export Citation Format

Share Document