almost disjoint
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 16)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
pp. 107872
Author(s):  
O. Guzmán ◽  
M. Hrušák ◽  
V.O. Rodrigues ◽  
S. Todorčević ◽  
A.H. Tomita

2021 ◽  
Vol 13 ◽  
Author(s):  
Michalis Anoussis ◽  
Vaggelis Felouzis ◽  
Konstantinos Tsaprounis

We prove estimates for the cardinality of set-theoretic ultrapowers in terms of the cardinality of almost disjoint families. Such results are then applied to obtain estimates for the density of ultrapowers of Banach spaces. We focus on the change of the behavior of the corresponding ultrapower when certain ‘‘completeness thresholds’’ of the relevant ultrafilter are crossed. Finally, we also provide an alternative characterization of measurable cardinals.


Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2214
Author(s):  
Vladimir Kanovei ◽  
Vassily Lyubetsky

In this paper we prove that for any m≥1 there exists a generic extension of L, the constructible universe, in which it is true that the set of all constructible reals (here subsets of ω) is equal to the set D1m of all reals definable by a parameter free type-theoretic formula with types bounded by m, and hence the Tarski ‘definability of definable’ sentence D1m∈D2m (even in the form D1m∈D21) holds for this particular m. This solves an old problem of Alfred Tarski (1948). Our methods, based on the almost-disjoint forcing of Jensen and Solovay, are significant modifications and further development of the methods presented in our two previous papers in this Journal.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1477 ◽  
Author(s):  
Vladimir Kanovei ◽  
Vassily Lyubetsky

In this paper, we prove the following. If n≥3, then there is a generic extension of L, the constructible universe, in which it is true that the set P(ω)∩L of all constructible reals (here—subsets of ω) is equal to the set P(ω)∩Δn1 of all (lightface) Δn1 reals. The result was announced long ago by Leo Harrington, but its proof has never been published. Our methods are based on almost-disjoint forcing. To obtain a generic extension as required, we make use of a forcing notion of the form Q=Cℂ×∏νQν in L, where C adds a generic collapse surjection b from ω onto P(ω)∩L, whereas each Qν, ν<ω2L, is an almost-disjoint forcing notion in the ω1-version, that adjoins a subset Sν of ω1L. The forcing notions involved are independent in the sense that no Qν-generic object can be added by the product of C and all Qξ, ξ≠ν. This allows the definition of each constructible real by a Σn1 formula in a suitably constructed subextension of the Q-generic extension. The subextension is generated by the surjection b, sets Sω·k+j with j∈b(k), and sets Sξ with ξ≥ω·ω. A special character of the construction of forcing notions Qν is L, which depends on a given n≥3, obscures things with definability in the subextension enough for vice versa any Δn1 real to be constructible; here the method of hidden invariance is applied. A discussion of possible further applications is added in the conclusive section.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 910 ◽  
Author(s):  
Vladimir Kanovei ◽  
Vassily Lyubetsky

Models of set theory are defined, in which nonconstructible reals first appear on a given level of the projective hierarchy. Our main results are as follows. Suppose that n ≥ 2 . Then: 1. If it holds in the constructible universe L that a ⊆ ω and a ∉ Σ n 1 ∪ Π n 1 , then there is a generic extension of L in which a ∈ Δ n + 1 1 but still a ∉ Σ n 1 ∪ Π n 1 , and moreover, any set x ⊆ ω , x ∈ Σ n 1 , is constructible and Σ n 1 in L . 2. There exists a generic extension L in which it is true that there is a nonconstructible Δ n + 1 1 set a ⊆ ω , but all Σ n 1 sets x ⊆ ω are constructible and even Σ n 1 in L , and in addition, V = L [ a ] in the extension. 3. There exists an generic extension of L in which there is a nonconstructible Σ n + 1 1 set a ⊆ ω , but all Δ n + 1 1 sets x ⊆ ω are constructible and Δ n + 1 1 in L . Thus, nonconstructible reals (here subsets of ω ) can first appear at a given lightface projective class strictly higher than Σ 2 1 , in an appropriate generic extension of L . The lower limit Σ 2 1 is motivated by the Shoenfield absoluteness theorem, which implies that all Σ 2 1 sets a ⊆ ω are constructible. Our methods are based on almost-disjoint forcing. We add a sufficient number of generic reals to L , which are very similar at a given projective level n but discernible at the next level n + 1 .


Sign in / Sign up

Export Citation Format

Share Document