scholarly journals Lifting Representations of Finite Reductive Groups I: Semisimple Conjugacy Classes

2014 ◽  
Vol 66 (6) ◽  
pp. 1201-1224 ◽  
Author(s):  
Jeffrey D. Adler ◽  
Joshua M. Lansky

AbstractSuppose that is a connected reductive group defined over a field k, and ┌ is a finite group acting via k-automorphisms of satisfying a certain quasi-semisimplicity condition. Then the identity component of the group of -fixed points in is reductive. We axiomatize the main features of the relationship between this fixed-point group and the pair (,┌) and consider any group G satisfying the axioms. If both and G are k-quasisplit, then we can consider their duals *and G*. We show the existence of and give an explicit formula for a natural map from the set of semisimple stable conjugacy classes in G*(k) to the analogous set for *(k). If k is finite, then our groups are automatically quasisplit, and our result specializes to give a map of semisimple conjugacy classes. Since such classes parametrize packets of irreducible representations of G(k) and (k), one obtains a mapping of such packets.

1973 ◽  
Vol 9 (3) ◽  
pp. 363-366 ◽  
Author(s):  
J.N. Ward

It is shown that a condition of Kurzwell concerning fixed-points of certain operators on a finite group G is sufficient to ensure that G is soluble. The result generalizes those of Martineau on elementary abelian fixed-point-free operator groups.


Author(s):  
DAVID GEPNER ◽  
JEREMIAH HELLER

Abstract We establish, in the setting of equivariant motivic homotopy theory for a finite group, a version of tom Dieck’s splitting theorem for the fixed points of a suspension spectrum. Along the way we establish structural results and constructions for equivariant motivic homotopy theory of independent interest. This includes geometric fixed-point functors and the motivic Adams isomorphism.


2012 ◽  
Vol 153 (2) ◽  
pp. 281-318 ◽  
Author(s):  
STEPHEN P. HUMPHRIES ◽  
EMMA L. RODE

AbstractFor a finite group G we study certain rings (k)G called k-S-rings, one for each k ≥ 1, where (1)G is the centraliser ring Z(ℂG) of G. These rings have the property that (k+1)G determines (k)G for all k ≥ 1. We study the relationship of (2)G with the weak Cayley table of G. We show that (2)G and the weak Cayley table together determine the sizes of the derived factors of G (noting that a result of Mattarei shows that (1)G = Z(ℂG) does not). We also show that (4)G determines G for any group G with finite conjugacy classes, thus giving an answer to a question of Brauer. We give a criteria for two groups to have the same 2-S-ring and a result guaranteeing that two groups have the same weak Cayley table. Using these results we find a pair of groups of order 512 that have the same weak Cayley table, are a Brauer pair, and have the same 2-S-ring.


Author(s):  
A. Vera-López ◽  
J. Sangroniz

SynopsisIn this paper we obtain new results which relate the number of conjugacy classes of л-elements of a finite group and an arbitrary subgroup, which are analogous to some results about normal subgroups. We also prove some new results which show the relationship between class numbers and splitting theorems. Our proofs only involve elementary techniques.


2016 ◽  
Vol 60 (2) ◽  
pp. 391-412
Author(s):  
E. I. Khukhro ◽  
N. Yu. Makarenko ◽  
P. Shumyatsky

AbstractSuppose that a finite groupGadmits an automorphismof order 2nsuch that the fixed-point subgroupof the involutionis nilpotent of classc. Letm=) be the number of fixed points of. It is proved thatGhas a characteristic soluble subgroup of derived length bounded in terms ofn,cwhose index is bounded in terms ofm,n,c. A similar result is also proved for Lie rings.


2021 ◽  
pp. 1-52
Author(s):  
M. ALI ASADI-VASFI ◽  
NASSER GOLESTANI ◽  
N. CHRISTOPHER PHILLIPS

Abstract Let G be a finite group, let A be an infinite-dimensional stably finite simple unital C*-algebra, and let $\alpha \colon G \to {\text{Aut}} (A)$ be an action of G on A which has the weak tracial Rokhlin property. Let $A^{\alpha}$ be the fixed point algebra. Then the radius of comparison satisfies ${\text{rc}} (A^{\alpha }) \leq {\text{rc}} (A)$ and ${\text{rc}} ( C^* (G, A, \alpha ) ) \leq ({1}/{\text{card} (G))} \cdot {\text{rc}} (A)$ . The inclusion of $A^{\alpha }$ in A induces an isomorphism from the purely positive part of the Cuntz semigroup ${\text{Cu}} (A^{\alpha })$ to the fixed points of the purely positive part of ${\text{Cu}} (A)$ , and the purely positive part of ${\text{Cu}} ( C^* (G, A, \alpha ) )$ is isomorphic to this semigroup. We construct an example in which $G \,{=}\, {\mathbb {Z}} / 2 {\mathbb {Z}}$ , A is a simple unital AH algebra, $\alpha $ has the Rokhlin property, ${\text{rc}} (A)> 0$ , ${\text{rc}} (A^{\alpha }) = {\text{rc}} (A)$ , and ${\text{rc}} (C^* (G, A, \alpha ) = ( {1}/{2}) {\text{rc}} (A)$ .


Author(s):  
SH. RAHIMI ◽  
Z. AKHLAGHI

Abstract Given a finite group G with a normal subgroup N, the simple graph $\Gamma _{\textit {G}}( \textit {N} )$ is a graph whose vertices are of the form $|x^G|$ , where $x\in {N\setminus {Z(G)}}$ and $x^G$ is the G-conjugacy class of N containing the element x. Two vertices $|x^G|$ and $|y^G|$ are adjacent if they are not coprime. We prove that, if $\Gamma _G(N)$ is a connected incomplete regular graph, then $N= P \times {A}$ where P is a p-group, for some prime p, $A\leq {Z(G)}$ and $\textbf {Z}(N)\not = N\cap \textbf {Z}(G)$ .


1984 ◽  
Vol 16 (3) ◽  
pp. 656-666 ◽  
Author(s):  
Bernard Ycart

We give here concrete formulas relating the transition generatrix functions of any random walk on a finite group to the irreducible representations of this group. Some examples of such explicit calculations for the permutation groups A4, S4, and A5 are included.


1993 ◽  
Vol 160 (2) ◽  
pp. 441-460 ◽  
Author(s):  
L.G. Kovacs ◽  
G.R. Robinson

Sign in / Sign up

Export Citation Format

Share Document