independent interest
Recently Published Documents


TOTAL DOCUMENTS

253
(FIVE YEARS 81)

H-INDEX

14
(FIVE YEARS 3)

2022 ◽  
Vol Volume 44 - Special... ◽  
Author(s):  
M. Ram Murty ◽  
V Kumar Murty

For each natural number $n$, we define $\omega^*(n)$ to be the number of primes $p$ such that $p-1$ divides $n$. We show that in contrast to the Hardy-Ramanujan theorem which asserts that the number $\omega(n)$ of prime divisors of $n$ has a normal order $\log\log n$, the function $\omega^*(n)$ does not have a normal order. We conjecture that for some positive constant $C$, $$\sum_{n\leq x} \omega^*(n)^2 \sim Cx(\log x). $$ Another conjecture related to this function emerges, which seems to be of independent interest. More precisely, we conjecture that for some constant $C>0$, as $x\to \infty$, $$\sum_{[p-1,q-1]\leq x} {1 \over [p-1, q-1]} \sim C \log x, $$ where the summation is over primes $p,q\leq x$ such that the least common multiple $[p-1,q-1]$ is less than or equal to $x$.


2022 ◽  
Vol 47 (1) ◽  
pp. 261-281
Author(s):  
Damian Dąbrowski

In a recent article (2021) we introduced and studied conical energies. We used them to prove three results: a characterization of rectifiable measures, a characterization of sets with big pieces of Lipschitz graphs, and a sufficient condition for boundedness of nice singular integral operators. In this note we give two examples related to sharpness of these results. One of them is due to Joyce and Mörters (2000), the other is new and could be of independent interest as an example of a relatively ugly set containing big pieces of Lipschitz graphs.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nikolaos Diamantis

Abstract We construct an explicit family of modular iterated integrals which involves cusp forms. This leads to a new method of producing modular invariant functions based on iterated integrals of modular forms. The construction will be based on an extension of higher-order modular forms which, in contrast to the standard higher-order forms, applies to general Fuchsian groups of the first kind and, as such, is of independent interest.


Author(s):  
Eugene B Bogomolny

Abstract The barrier billiard is the simplest example of pseudo-integrable models with interesting and intricate classical and quantum properties. Using the Wiener-Hopf method it is demonstrated that quantum mechanics of a rectangular billiard with a barrier in the centre can be reduced to the investigation of a certain unitary matrix. Under heuristic assumptions this matrix is substituted by a special low-complexity random unitary matrix of independent interest. The main results of the paper are (i) spectral statistics of such billiards is insensitive to the barrier height and (ii) it is well described by the semi-Poisson distributions.


2021 ◽  
Author(s):  
Sérgio Marcelino ◽  
Umberto Rivieccio

Abstract An involutive Stone algebra (IS-algebra) is a structure that is simultaneously a De Morgan algebra and a Stone algebra (i.e. a pseudo-complemented distributive lattice satisfying the well-known Stone identity, ∼ x ∨ ∼ ∼ x ≈ 1). IS-algebras have been studied algebraically and topologically since the 1980’s, but a corresponding logic (here denoted IS ≤ ) has been introduced only very recently. The logic IS ≤ is the departing point for the present study, which we then extend to a wide family of previously unknown logics defined from IS-algebras. We show that IS ≤ is a conservative expansion of the Belnap-Dunn four-valued logic (i.e. the order-preserving logic of the variety of De Morgan algebras), and we give a finite Hilbert-style axiomatization for it. More generally, we introduce a method for expanding conservatively every super-Belnap logic so as to obtain an extension of IS ≤ . We show that every logic thus defined can be axiomatized by adding a fixed finite set of rule schemata to the corresponding super-Belnap base logic. We also consider a few sample extensions of IS ≤ that cannot be obtained in the above- described way, but can nevertheless be axiomatized finitely by other methods. Most of our axiomatization results are obtained in two steps: through a multiple-conclusion calculus first, which we then reduce to a traditional one. The multiple-conclusion axiomatizations introduced in this process, being analytic, are of independent interest from a proof-theoretic standpoint. Our results entail that the lattice of super-Belnap logics (which is known to be uncountable) embeds into the lattice of extensions of IS ≤ . Indeed, as in the super-Belnap case, we establish that the finitary extensions of IS ≤ are already uncountably many.


2021 ◽  
Vol 2022 (1) ◽  
pp. 353-372
Author(s):  
Nishanth Chandran ◽  
Divya Gupta ◽  
Akash Shah

Abstract In 2-party Circuit-based Private Set Intersection (Circuit-PSI), P 0 and P 1 hold sets S0 and S1 respectively and wish to securely compute a function f over the set S0 ∩ S1 (e.g., cardinality, sum over associated attributes, or threshold intersection). Following a long line of work, Pinkas et al. (PSTY, Eurocrypt 2019) showed how to construct a concretely efficient Circuit-PSI protocol with linear communication complexity. However, their protocol requires super-linear computation. In this work, we construct concretely efficient Circuit-PSI protocols with linear computational and communication cost. Further, our protocols are more performant than the state-of-the-art, PSTY – we are ≈ 2.3× more communication efficient and are up to 2.8× faster. We obtain our improvements through a new primitive called Relaxed Batch Oblivious Programmable Pseudorandom Functions (RB-OPPRF) that can be seen as a strict generalization of Batch OPPRFs that were used in PSTY. This primitive could be of independent interest.


Author(s):  
Xavier Bonnetain ◽  
Samuel Jaques

We present the first complete descriptions of quantum circuits for the offline Simon’s algorithm, and estimate their cost to attack the MAC Chaskey, the block cipher PRINCE and the NIST lightweight finalist AEAD scheme Elephant. These attacks require a reasonable amount of qubits, comparable to the number of qubits required to break RSA-2048. They are faster than other collision algorithms, and the attacks against PRINCE and Chaskey are the most efficient known to date. As Elephant has a key smaller than its state size, the algorithm is less efficient and its cost ends up very close to or above the cost of exhaustive search.We also propose an optimized quantum circuit for boolean linear algebra as well as complete reversible implementations of PRINCE, Chaskey, spongent and Keccak which are of independent interest for quantum cryptanalysis. We stress that our attacks could be applied in the future against today’s communications, and recommend caution when choosing symmetric constructions for cases where long-term security is expected.


Author(s):  
Ravishankar Ramanathan ◽  
Yuan Liu ◽  
Pawel Horodecki

Abstract It is of interest to study how contextual quantum mechanics is, in terms of the violation of Kochen Specker state-independent and state-dependent non-contextuality inequalities. We present state-independent non-contextuality inequalities with large violations, in particular, we exploit a connection between Kochen-Specker proofs and pseudo-telepathy games to show KS proofs in Hilbert spaces of dimension $d \geq 2^{17}$ with the ratio of quantum value to classical bias being $O(\sqrt{d}/\log d)$. We study the properties of this KS set and show applications of the large violation. It has been recently shown that Kochen-Specker proofs always consist of substructures of state-dependent contextuality proofs called $01$-gadgets or bugs. We show a one-to-one connection between $01$-gadgets in $\mathbb{C}^d$ and Hardy paradoxes for the maximally entangled state in $\mathbb{C}^d \otimes \mathbb{C}^d$. We use this connection to construct large violation $01$-gadgets between arbitrary vectors in $\mathbb{C}^d$, as well as novel Hardy paradoxes for the maximally entangled state in $\mathbb{C}^d \otimes \mathbb{C}^d$, and give applications of these constructions. As a technical result, we show that the minimum dimension of the faithful orthogonal representation of a graph in $\mathbb{R}^d$ is not a graph monotone, a result that may be of independent interest.


Author(s):  
DAVID GEPNER ◽  
JEREMIAH HELLER

Abstract We establish, in the setting of equivariant motivic homotopy theory for a finite group, a version of tom Dieck’s splitting theorem for the fixed points of a suspension spectrum. Along the way we establish structural results and constructions for equivariant motivic homotopy theory of independent interest. This includes geometric fixed-point functors and the motivic Adams isomorphism.


Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2830
Author(s):  
Aigerim Kalybay ◽  
Ryskul Oinarov ◽  
Yaudat Sultanaev

In the paper, we establish the oscillatory and spectral properties of a class of fourth-order differential operators in dependence on integral behavior of its coefficients at zero and infinity. In order to obtain these results, we investigate a certain weighted second-order differential inequality of independent interest.


Sign in / Sign up

Export Citation Format

Share Document