scholarly journals Centre-valued Index for Toeplitz Operators with Noncommuting Symbols

2016 ◽  
Vol 68 (5) ◽  
pp. 1023-1066
Author(s):  
John Phillips ◽  
Iain Raeburn

AbstractWe formulate and prove a “winding number” index theorem for certain “Toeplitz” operators in the same spirit as Gohberg–Krein, Lesch and others. The “number” is replaced by a self-adjoint operator in a subalgebra Z ⊆ Z(A) of a unital C*-algebra, A. We assume a faithful Z-valued trace τ on A left invariant under an action α:R → Aut(A) leaving Z pointwise fixed. If δ is the infinitesimal generator of α and u is invertible in dom(δ), then the “winding operator” of u is . By a careful choice of representations we extend (A, Z, τ, α) to a von Neumann setting where and . Then , the von Neumann crossed product, and there is a faithful, dual -trace on . If P is the projection in corresponding to the non-negative spectrum of the generator of R inside and is the embedding, then we define and show it is Fredholm in an appropriate sense and the -valued index of Tu is the negative of the winding operator. In outline the proof follows that of the scalar case done previously by the authors. The main difficulty is making sense of the constructions with the scalars replaced by in the von Neumann setting. The construction of the dual -trace on requires the nontrivial development of a -Hilbert algebra theory. We show that certain of these Fredholm operators fiber as a “section” of Fredholm operators with scalar-valued index and the centre-valued index fibers as a section of the scalar-valued indices.

2005 ◽  
Vol 48 (2) ◽  
pp. 251-259 ◽  
Author(s):  
G. J. Murphy

AbstractThe index theory considered in this paper, a generalisation of the classical Fredholm index theory, is obtained in terms of a non-finite trace on a unitalC*-algebra. We relate it to the index theory of M. Breuer, which is developed in a von Neumann algebra setting, by means of a representation theorem. We show how our new index theory can be used to obtain an index theorem for Toeplitz operators on the compact group U(2), where the classical index theory does not give any interesting result.


2000 ◽  
Vol 11 (08) ◽  
pp. 1057-1078
Author(s):  
JINGBO XIA

Kuroda's version of the Weyl-von Neumann theorem asserts that, given any norm ideal [Formula: see text] not contained in the trace class [Formula: see text], every self-adjoint operator A admits the decomposition A=D+K, where D is a self-adjoint diagonal operator and [Formula: see text]. We extend this theorem to the setting of multiplication operators on compact metric spaces (X, d). We show that if μ is a regular Borel measure on X which has a σ-finite one-dimensional Hausdorff measure, then the family {Mf:f∈ Lip (X)} of multiplication operators on T2(X, μ) can be simultaneously diagonalized modulo any [Formula: see text]. Because the condition [Formula: see text] in general cannot be dropped (Kato-Rosenblum theorem), this establishes a special relation between [Formula: see text] and the one-dimensional Hausdorff measure. The main result of the paper is that such a relation breaks down in Hausdorff dimensions p>1.


2017 ◽  
Vol 69 (3) ◽  
pp. 548-578 ◽  
Author(s):  
Michael Hartglass

AbstractWe study a canonical C* -algebra, 𝒮(Г,μ), that arises from a weighted graph (Г,μ), speci fic cases of which were previously studied in the context of planar algebras. We discuss necessary and sufficient conditions of the weighting that ensure simplicity and uniqueness of trace of 𝒮(Г,μ), and study the structure of its positive cone. We then study the *-algebra,𝒜, generated by the generators of 𝒮(Г,μ), and use a free differential calculus and techniques of Charlesworth and Shlyakhtenko as well as Mai, Speicher, and Weber to show that certain “loop” elements have no atoms in their spectral measure. After modifying techniques of Shlyakhtenko and Skoufranis to show that self adjoint elements x ∊ Mn(𝒜) have algebraic Cauchy transform, we explore some applications to eigenvalues of polynomials inWishart matrices and to diagrammatic elements in von Neumann algebras initially considered by Guionnet, Jones, and Shlyakhtenko.


2008 ◽  
Vol 19 (04) ◽  
pp. 481-501 ◽  
Author(s):  
TETSUO HARADA ◽  
HIDEKI KOSAKI

Let τ be a faithful semi-finite normal trace on a semi-finite von Neumann algebra, and f(t) be a convex function with f(0) = 0. The trace Jensen inequality states τ(f(a* xa)) ≤ τ(a* f(x)a) for a contraction a and a self-adjoint operator x. Under certain strict convexity assumption on f(t), we will study when this inequality reduces to the equality.


1999 ◽  
Vol 167 (2) ◽  
pp. 243-344 ◽  
Author(s):  
Gert K. Pedersen
Keyword(s):  

2019 ◽  
Vol 72 (4) ◽  
pp. 988-1023
Author(s):  
Clayton Suguio Hida ◽  
Piotr Koszmider

AbstractA subset ${\mathcal{X}}$ of a C*-algebra ${\mathcal{A}}$ is called irredundant if no $A\in {\mathcal{X}}$ belongs to the C*-subalgebra of ${\mathcal{A}}$ generated by ${\mathcal{X}}\setminus \{A\}$. Separable C*-algebras cannot have uncountable irredundant sets and all members of many classes of nonseparable C*-algebras, e.g., infinite dimensional von Neumann algebras have irredundant sets of cardinality continuum.There exists a considerable literature showing that the question whether every AF commutative nonseparable C*-algebra has an uncountable irredundant set is sensitive to additional set-theoretic axioms, and we investigate here the noncommutative case.Assuming $\diamondsuit$ (an additional axiom stronger than the continuum hypothesis), we prove that there is an AF C*-subalgebra of ${\mathcal{B}}(\ell _{2})$ of density $2^{\unicode[STIX]{x1D714}}=\unicode[STIX]{x1D714}_{1}$ with no nonseparable commutative C*-subalgebra and with no uncountable irredundant set. On the other hand we also prove that it is consistent that every discrete collection of operators in ${\mathcal{B}}(\ell _{2})$ of cardinality continuum contains an irredundant subcollection of cardinality continuum.Other partial results and more open problems are presented.


Sign in / Sign up

Export Citation Format

Share Document