scholarly journals Large Irredundant Sets in Operator Algebras

2019 ◽  
Vol 72 (4) ◽  
pp. 988-1023
Author(s):  
Clayton Suguio Hida ◽  
Piotr Koszmider

AbstractA subset ${\mathcal{X}}$ of a C*-algebra ${\mathcal{A}}$ is called irredundant if no $A\in {\mathcal{X}}$ belongs to the C*-subalgebra of ${\mathcal{A}}$ generated by ${\mathcal{X}}\setminus \{A\}$. Separable C*-algebras cannot have uncountable irredundant sets and all members of many classes of nonseparable C*-algebras, e.g., infinite dimensional von Neumann algebras have irredundant sets of cardinality continuum.There exists a considerable literature showing that the question whether every AF commutative nonseparable C*-algebra has an uncountable irredundant set is sensitive to additional set-theoretic axioms, and we investigate here the noncommutative case.Assuming $\diamondsuit$ (an additional axiom stronger than the continuum hypothesis), we prove that there is an AF C*-subalgebra of ${\mathcal{B}}(\ell _{2})$ of density $2^{\unicode[STIX]{x1D714}}=\unicode[STIX]{x1D714}_{1}$ with no nonseparable commutative C*-subalgebra and with no uncountable irredundant set. On the other hand we also prove that it is consistent that every discrete collection of operators in ${\mathcal{B}}(\ell _{2})$ of cardinality continuum contains an irredundant subcollection of cardinality continuum.Other partial results and more open problems are presented.

2014 ◽  
Vol 20 (1) ◽  
pp. 94-97
Author(s):  
Natasha Dobrinen

2017 ◽  
Vol 69 (3) ◽  
pp. 548-578 ◽  
Author(s):  
Michael Hartglass

AbstractWe study a canonical C* -algebra, 𝒮(Г,μ), that arises from a weighted graph (Г,μ), speci fic cases of which were previously studied in the context of planar algebras. We discuss necessary and sufficient conditions of the weighting that ensure simplicity and uniqueness of trace of 𝒮(Г,μ), and study the structure of its positive cone. We then study the *-algebra,𝒜, generated by the generators of 𝒮(Г,μ), and use a free differential calculus and techniques of Charlesworth and Shlyakhtenko as well as Mai, Speicher, and Weber to show that certain “loop” elements have no atoms in their spectral measure. After modifying techniques of Shlyakhtenko and Skoufranis to show that self adjoint elements x ∊ Mn(𝒜) have algebraic Cauchy transform, we explore some applications to eigenvalues of polynomials inWishart matrices and to diagrammatic elements in von Neumann algebras initially considered by Guionnet, Jones, and Shlyakhtenko.


1988 ◽  
Vol 40 (6) ◽  
pp. 1482-1527 ◽  
Author(s):  
Antony Wassermann

In the first paper of this series [17], we set up some general machinery for studying ergodic actions of compact groups on von Neumann algebras, namely, those actions for which . In particular we obtained a characterisation of the full multiplicity ergodic actions:THEOREM A. If α is an ergodic action of G on , then the following conditions are equivalent:(1) Each spectral subspace has multiplicity dim π for π in .(2) Each π in admits a unitary eigenmatrix in .(3) The W* crossed product is a (Type I) factor.(4) The C* crossed product of the C* algebra of norm continuity is isomorphic to the algebra of compact operators on a Hilbert space.


2007 ◽  
Vol 13 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Nik Weaver

AbstractWe survey the use of extra-set-theoretic hypotheses, mainly the continuum hypothesis, in the C*-algebra literature. The Calkin algebra emerges as a basic object of interest.


2002 ◽  
Vol 45 (2) ◽  
pp. 349-352 ◽  
Author(s):  
Lajos Molnár

AbstractAs a consequence of the main result of the paper we obtain that every 2-local isometry of the $C^*$-algebra $B(H)$ of all bounded linear operators on a separable infinite-dimensional Hilbert space $H$ is an isometry. We have a similar statement concerning the isometries of any extension of the algebra of all compact operators by a separable commutative $C^*$-algebra. Therefore, on those $C^*$-algebras the isometries are completely determined by their local actions on the two-point subsets of the underlying algebras.AMS 2000 Mathematics subject classification: Primary 47B49


1996 ◽  
Vol 39 (4) ◽  
pp. 420-428 ◽  
Author(s):  
Allan P. Donsig ◽  
S. C. Power

AbstractAF C*-algebras contain natural AF masas which, here, we call standard diagonals. Standard diagonals are unique, in the sense that two standard diagonals in an AF C*-algebra are conjugate by an approximately inner automorphism. We show that this uniqueness fails for non-selfadjoint AF operator algebras. Precisely, we construct two standard diagonals in a particular non-selfadjoint AF operator algebra which are not conjugate by an approximately inner automorphism of the non-selfadjoint algebra.


1975 ◽  
Vol 56 ◽  
pp. 7-11 ◽  
Author(s):  
Masatoshi Enomoto ◽  
Kazuhiro Tamaki

Very recently, M. Choda, I. Kasahara and R. Nakamoto [3] extend the concept of free action of automorphisms for C*-algebras and prove several theorems which are hither to known for von Neumann algebras. In the present note, we shall concern with freely acting automorphisms on abelian C*-algebras. In § 2, several equivalent conditions for the free action are obtained. In §3, we shall apply them to an automorphism which has a transversal group.


Author(s):  
Isaac Goldbring ◽  
Bradd Hart

Abstract We show that the following operator algebras have hyperarithmetic theory: the hyperfinite II$_1$ factor $\mathcal R$, $L(\varGamma )$ for $\varGamma $ a finitely generated group with solvable word problem, $C^*(\varGamma )$ for $\varGamma $ a finitely presented group, $C^*_\lambda (\varGamma )$ for $\varGamma $ a finitely generated group with solvable word problem, $C(2^\omega )$ and $C(\mathbb P)$ (where $\mathbb P$ is the pseudoarc). We also show that the Cuntz algebra $\mathcal O_2$ has a hyperarithmetic theory provided that the Kirchberg embedding problems have affirmative answers. Finally, we prove that if there is an existentially closed (e.c.) II$_1$ factor (resp. $\textrm{C}^*$-algebra) that does not have hyperarithmetic theory, then there are continuum many theories of e.c. II$_1$ factors (resp. e.c. $\textrm{C}^*$-algebras).


Sign in / Sign up

Export Citation Format

Share Document