scalar case
Recently Published Documents


TOTAL DOCUMENTS

167
(FIVE YEARS 26)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Zong-Zhe Du ◽  
Cen Zhang ◽  
Shuang-Yong Zhou

Abstract We develop a formalism to extract triple crossing symmetric positivity bounds for effective field theories with multiple degrees of freedom, by making use of su symmetric dispersion relations supplemented with positivity of the partial waves, st null constraints and the generalized optical theorem. This generalizes the convex cone approach to constrain the s2 coefficient space to higher orders. Optimal positive bounds can be extracted by semi-definite programs with a continuous decision variable, compared with linear programs for the case of a single field. As an example, we explicitly compute the positivity constraints on bi-scalar theories, and find all the Wilson coefficients can be constrained in a finite region, including the coefficients with odd powers of s, which are absent in the single scalar case.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2270
Author(s):  
Andreas H. Hamel ◽  
Frank Heyde

A theory for set-valued functions is developed, which are translative with respect to a linear operator. It is shown that such functions cover a wide range of applications, from projections in Hilbert spaces, set-valued quantiles for vector-valued random variables, to scalar or set-valued risk measures in finance with defaultable or nondefaultable securities. Primal, dual, and scalar representation results are given, among them an infimal convolution representation, which is not so well known even in the scalar case. Along the way, new concepts of set-valued lower/upper expectations are introduced and dual representation results are formulated using such expectations. An extension to random sets is discussed at the end. The principal methodology consisted of applying the complete lattice framework of set optimization.


Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2157
Author(s):  
Ehsan Akbari Sekehravani ◽  
Giovanni Leone ◽  
Rocco Pierri

This paper aims at discussing the resolution achievable in the reconstruction of both circumference sources from their radiated far-field and circumference scatterers from their scattered far-field observed for the 2D scalar case. The investigation is based on an inverse problem approach, requiring the analysis of the spectral decomposition of the pertinent linear operator by the Singular Value Decomposition (SVD). The attention is focused upon the evaluation of the Number of Degrees of Freedom (NDF), connected to singular values behavior, and of the Point Spread Function (PSF), which accounts for the reconstruction of a point-like unknown and depends on both the NDF and on the singular functions. A closed-form evaluation of the PSF relevant to the inverse source problem is first provided. In addition, an approximated closed-form evaluation is introduced and compared with the exact one. This is important for the subsequent evaluation of the PSF relevant to the inverse scattering problem, which is based on a similar approximation. In this case, the approximation accuracy of the PSF is verified at least in its main lobe region by numerical simulation since it is the most critical one as far as the resolution discussion is concerned. The main result of the analysis is the space invariance of the PSF when the observation is the full angle in the far-zone region, showing that resolution remains unchanged over the entire source/investigation domain in the considered geometries. The paper also poses the problem of identifying the minimum number and the optimal directions of the impinging plane waves in the inverse scattering problem to achieve the full NDF; some numerical results about it are presented. Finally, a numerical application of the PSF concept is performed in inverse scattering, and its relevance in the presence of noisy data is outlined.


Author(s):  
D. T. V. An ◽  
C. Gutiérrez

AbstractThis paper focuses on formulas for the ε-subdifferential of the optimal value function of scalar and vector convex optimization problems. These formulas can be applied when the set of solutions of the problem is empty. In the scalar case, both unconstrained problems and problems with an inclusion constraint are considered. For the last ones, limiting results are derived, in such a way that no qualification conditions are required. The main mathematical tool is a limiting calculus rule for the ε-subdifferential of the sum of convex and lower semicontinuous functions defined on a (non necessarily reflexive) Banach space. In the vector case, unconstrained problems are studied and exact formulas are derived by linear scalarizations. These results are based on a concept of infimal set, the notion of cone proper set and an ε-subdifferential for convex vector functions due to Taa.


Author(s):  
Lorenzo Baldassari ◽  
Pierre Millien ◽  
Alice L. Vanel

AbstractWe study the electromagnetic field scattered by a metallic nanoparticle with dispersive material parameters in a resonant regime. We consider the particle placed in a homogeneous medium in a low-frequency regime. We define modes for the non-Hermitian problem as perturbations of electro-static modes, and obtain a modal approximation of the scattered field in the frequency domain. The poles of the expansion correspond to the eigenvalues of a singular boundary integral operator and are shown to lie in a bounded region near the origin of the lower-half complex plane. Finally, we show that this modal representation gives a very good approximation of the field in the time domain. We present numerical simulations in two dimensions to corroborate our results.


Author(s):  
Florian Stelzer ◽  
Serhiy Yanchuk

AbstractA single dynamical system with time-delayed feedback can emulate networks. This property of delay systems made them extremely useful tools for Machine-Learning applications. Here, we describe several possible setups, which allow emulating multilayer (deep) feed-forward networks as well as recurrent networks of coupled discrete maps with arbitrary adjacency matrix by a single system with delayed feedback. While the network’s size can be arbitrary, the generating delay system can have a low number of variables, including a scalar case.


Universe ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 102
Author(s):  
Sergey Afonin

Within the bottom-up holographic approach to QCD, the highly excited hadrons are identified with the bulk normal modes in the fifth “holographic” dimension. We show that additional states in the same mass range can appear also from taking into consideration the 5D fields dual to higher dimensional QCD operators. The possible effects of these operators have not been taken into account in virtually any phenomenological applications. Using the scalar case as the simplest example, we demonstrate that the additional higher dimensional operators lead to a large degeneracy of highly excited states in the soft wall holographic model, and in the hard wall holographic model, they result in a proliferation of excited states. The considered model can be viewed as the first analytical toy model predicting a one-to-one mapping of the excited meson states to definite QCD operators, to which they prefer to couple.


2021 ◽  
Author(s):  
Ehsan Akbari Sekehravani ◽  
Giovanni Leone ◽  
Rocco Pierri

We consider the evaluation of the Number of Degrees of Freedom (NDF) of the field radiated by square sources in the far zone. The analysis is performed by employing a Singular-Value Decomposition (SVD) of the radiation operator in the two-dimensional scalar case. To this end, we start the analysis from simple geometries like two parallel strips and angle strips where analytical results can be established. For sufficiently spaced strip sources, the NDF depends only on their total electrical length. Then results for square sources follow on the same line. Finally, the numerical investigation of the case of concentric square sources, leading to an NDF independent on the inner source, opens the way to the discussion of the NDF of a full square source. In this case, it results that it depends only on the source perimeter. <br>


Sign in / Sign up

Export Citation Format

Share Document