scholarly journals ON EQUALITY CONDITION FOR TRACE JENSEN INEQUALITY IN SEMI-FINITE VON NEUMANN ALGEBRAS

2008 ◽  
Vol 19 (04) ◽  
pp. 481-501 ◽  
Author(s):  
TETSUO HARADA ◽  
HIDEKI KOSAKI

Let τ be a faithful semi-finite normal trace on a semi-finite von Neumann algebra, and f(t) be a convex function with f(0) = 0. The trace Jensen inequality states τ(f(a* xa)) ≤ τ(a* f(x)a) for a contraction a and a self-adjoint operator x. Under certain strict convexity assumption on f(t), we will study when this inequality reduces to the equality.

2013 ◽  
Vol 24 (09) ◽  
pp. 1350075
Author(s):  
HIDEKI KOSAKI

Let [Formula: see text] be a semi-finite von Neumann algebra equipped with a faithful semi-finite normal trace τ, and f(t) be a convex function with f(0) = 0. The trace Jensen inequality in our previous work states τ(f(a*xa)) ≤ τ(a*f(x)a) (as long as the both sides are well-defined) for a contraction [Formula: see text] and a semi-bounded τ-measurable operator x. Validity of this inequality for (not necessarily semi-bounded) self-adjoint τ-measurable operators is investigated.


2013 ◽  
Vol 56 (1) ◽  
pp. 9-12 ◽  
Author(s):  
SHAVKAT AYUPOV ◽  
FARKHAD ARZIKULOV

AbstractIn the present paper we prove that every 2-local derivation on a semi-finite von Neumann algebra is a derivation.


Author(s):  
Panchugopal Bikram ◽  
Rahul Kumar ◽  
Rajeeb Mohanta ◽  
Kunal Mukherjee ◽  
Diptesh Saha

Bożejko and Speicher associated a finite von Neumann algebra M T to a self-adjoint operator T on a complex Hilbert space of the form $\mathcal {H}\otimes \mathcal {H}$ which satisfies the Yang–Baxter relation and $ \left\| T \right\| < 1$ . We show that if dim $(\mathcal {H})$ ⩾ 2, then M T is a factor when T admits an eigenvector of some special form.


2001 ◽  
Vol 12 (06) ◽  
pp. 743-750 ◽  
Author(s):  
TERESA BATES ◽  
THIERRY GIORDANO

In this note we prove that if G is a countable discrete group, then every uniformly bounded cocycle from a standard Borel G-space into a finite Von Neumann algebra is cohomologous to a unitary cocycle. This generalizes results of both F. H. Vasilescu and L. Zsidó and R. J. Zimmer.


2018 ◽  
Vol 61 (2) ◽  
pp. 236-239
Author(s):  
Remi Boutonnet ◽  
Jean Roydor

AbstractWe give a short proof of a result of T. Bates and T. Giordano stating that any uniformly bounded Borel cocycle into a finite von Neumann algebra is cohomologous to a unitary cocycle. We also point out a separability issue in their proof. Our approach is based on the existence of a non-positive curvature metric on the positive cone of a finite von Neumann algebra.


2002 ◽  
Vol 65 (1) ◽  
pp. 79-91 ◽  
Author(s):  
Cui Jianlian ◽  
Hou Jinchuan

In this paper, we give some characterisations of homomorphisms on von Neumann algebras by linear preservers. We prove that a bounded linear surjective map from a von Neumann algebra onto another is zero-product preserving if and only if it is a homomorphism multiplied by an invertible element in the centre of the image algebra. By introducing the notion of tr-rank of the elements in finite von Neumann algebras, we show that a unital linear map from a linear subspace ℳ of a finite von Neumann algebra ℛ into ℛ can be extended to an algebraic homomorphism from the subalgebra generated by ℳ into ℛ; and a unital self-adjoint linear map from a finite von Neumann algebra onto itself is completely tr-rank preserving if and only if it is a spatial *-automorphism.


Author(s):  
Martijn Caspers

AbstractConsider the free orthogonal quantum groups $$O_N^+(F)$$ O N + ( F ) and free unitary quantum groups $$U_N^+(F)$$ U N + ( F ) with $$N \ge 3$$ N ≥ 3 . In the case $$F = \text {id}_N$$ F = id N it was proved both by Isono and Fima-Vergnioux that the associated finite von Neumann algebra $$L_\infty (O_N^+)$$ L ∞ ( O N + ) is strongly solid. Moreover, Isono obtains strong solidity also for $$L_\infty (U_N^+)$$ L ∞ ( U N + ) . In this paper we prove for general $$F \in GL_N(\mathbb {C})$$ F ∈ G L N ( C ) that the von Neumann algebras $$L_\infty (O_N^+(F))$$ L ∞ ( O N + ( F ) ) and $$L_\infty (U_N^+(F))$$ L ∞ ( U N + ( F ) ) are strongly solid. A crucial part in our proof is the study of coarse properties of gradient bimodules associated with Dirichlet forms on these algebras and constructions of derivations due to Cipriani–Sauvageot.


2002 ◽  
Vol 132 (1) ◽  
pp. 137-154 ◽  
Author(s):  
NARCISSE RANDRIANANTOANINA

Let [Mscr ] be a von Neumann algebra (not necessarily semi-finite). We provide a generalization of the classical Kadec–Pełczyński subsequence decomposition of bounded sequences in Lp[0, 1] to the case of the Haagerup Lp-spaces (1 [les ] p < 1 ). In particular, we prove that if { φn}∞n=1 is a bounded sequence in the predual [Mscr ]∗ of [Mscr ], then there exist a subsequence {φnk}∞k=1 of {φn}∞n=1, a decomposition φnk = yk+zk such that {yk, k [ges ] 1} is relatively weakly compact and the support projections supp(zk) ↓k 0 (or similarly mutually disjoint). As an application, we prove that every non-reflexive subspace of the dual of any given C*-algebra (or Jordan triples) contains asymptotically isometric copies of [lscr ]1 and therefore fails the fixed point property for non-expansive mappings. These generalize earlier results for the case of preduals of semi-finite von Neumann algebras.


2011 ◽  
Vol 2011 ◽  
pp. 1-24
Author(s):  
Christopher M. Pavone

We extend Akemann, Anderson, and Weaver'sSpectral Scaledefinition to include selfadjoint operators fromsemifinitevon Neumann algebras. New illustrations of spectral scales in both the finite and semifinite von Neumann settings are presented. A counterexample to a conjecture made by Akemann concerning normal operators and the geometry of the their perspective spectral scales (in the finite setting) is offered.


2011 ◽  
Vol 22 (07) ◽  
pp. 991-1011 ◽  
Author(s):  
JUNSHENG FANG ◽  
MINGCHU GAO ◽  
ROGER R. SMITH

A triple of finite von Neumann algebras B ⊆ N ⊆ M is said to have the relative weak asymptotic homomorphism property if there exists a net of unitary operators {uλ}λ∈Λ in B such that [Formula: see text] for all x,y ∈ M. We prove that a triple of finite von Neumann algebras B ⊆ N ⊆ M has the relative weak asymptotic homomorphism property if and only if N contains the set of all x ∈ M such that [Formula: see text] for a finite number of elements x1, …, xn in M. Such an x is called a one-sided quasi-normalizer of B, and the von Neumann algebra generated by all one-sided quasi-normalizers of B is called the one-sided quasi-normalizer algebra of B. We characterize one-sided quasi-normalizer algebras for inclusions of group von Neumann algebras and use this to show that one-sided quasi-normalizer algebras and quasi-normalizer algebras are not equal in general. We also give some applications to inclusions L(H) ⊆ L(G) arising from containments of groups. For example, when L(H) is a masa we determine the unitary normalizer algebra as the von Neumann algebra generated by the normalizers of H in G.


Sign in / Sign up

Export Citation Format

Share Document