On the Distribution of Primitive Lattice Points in the Plane

1959 ◽  
Vol 2 (2) ◽  
pp. 91-96 ◽  
Author(s):  
J.H.H. Chalk ◽  
P. Erdos

Let 1,θ1, θ2, …,θn be real numbers linearly independent over the rational field and let α1, α2,…, αn be arbitrary real numbers. Then, to each N > 0 and ε > 0, there correspond integerswhich satisfy the set of inequalitiesA

1962 ◽  
Vol 14 ◽  
pp. 597-601 ◽  
Author(s):  
J. Kiefer

The main object of this paper is to prove the following:Theorem. Let f1, … ,fk be linearly independent continuous functions on a compact space. Then for 1 ≤ s ≤ k there exist real numbers aij, 1 ≤ i ≤ s, 1 ≤ j ≤ k, with {aij, 1 ≤ i, j ≤ s} n-singular, and a discrete probability measure ε*on, such that(a) the functions gi = Σj=1kaijfj 1 ≤ i ≤ s, are orthonormal (ε*) to the fj for s < j ≤ k;(b)The result in the case s = k was first proved in (2). The result when s < k, which because of the orthogonality condition of (a) is more general than that when s = k, was proved in (1) under a restriction which will be discussed in § 3. The present proof does not require this ad hoc restriction, and is more direct in approach than the method of (2) (although involving as much technical detail as the latter in the case when the latter applies).


1965 ◽  
Vol 5 (4) ◽  
pp. 453-462 ◽  
Author(s):  
R. P. Bambah ◽  
Alan Woods ◽  
Hans Zassenhaus

Let K be a bounded, open convex set in euclidean n-space Rn, symmetric in the origin 0. Further let L be a lattice in Rn containing 0 and put extended over all positive real numbers ui for which uiK contains i linearly independent points of L. Denote the Jordan content of K by V(K) and the determinant of L by d(L). Minkowski's second inequality in the geometry of numbers states that Minkowski's original proof has been simplified by Weyl [6] and Cassels [7] and a different proof hasbeen given by Davenport [1].


1953 ◽  
Vol 5 ◽  
pp. 456-459 ◽  
Author(s):  
Theodor Estermann

1. Let a be any irrational real number, and let F(u) denote the number of those positive integers for which (n, [nα]) = 1. Watson proved in the preceding paper that


1960 ◽  
Vol 12 ◽  
pp. 297-302 ◽  
Author(s):  
L. J. Mordell

Let Ai, A2, … , An be n linearly independent points in n-dimensional Euclidean space of a lattice Λ. The points ± A1, ±A2, . . , ±An define a closed n-dimensional octahedron (or “cross poly tope“) K with centre at the origin O. Our problem is to find a basis for the lattices Λ which have no points in K except ±A1, ±A2, … , ±An.Let the position of a point P in space be defined vectorially by1where the p are real numbers. We have the following results.When n = 2, it is well known that a basis is2When n = 3, Minkowski (1) proved that there are two types of lattices, with respective bases3When n = 4, there are six essentially different bases typified by A1, A2, A3 and one of4In all expressions of this kind, the signs are independent of each other and of any other signs. This result is a restatement of a result by Brunngraber (2) and a proof is given by Wolff (3).


1969 ◽  
Vol 6 (03) ◽  
pp. 478-492 ◽  
Author(s):  
William E. Wilkinson

Consider a discrete time Markov chain {Zn } whose state space is the non-negative integers and whose transition probability matrix ║Pij ║ possesses the representation where {Pr }, r = 1,2,…, is a finite or denumerably infinite sequence of non-negative real numbers satisfying , and , is a corresponding sequence of probability generating functions. It is assumed that Z 0 = k, a finite positive integer.


1955 ◽  
Vol 7 ◽  
pp. 337-346 ◽  
Author(s):  
R. P. Bambah ◽  
K. Rogers

1. Introduction. Several authors have proved theorems of the following type:Let x0, y0 be any real numbers. Then for certain functions f(x, y), there exist numbers x, y such that1.1 x ≡ x0, y ≡ y0 (mod 1),and1.2 .The first result of this type, but with replaced by min , was given by Barnes (3) for the case when the function is an indefinite binary quadratic form. A generalisation of this was proved by elementary geometry by K. Rogers (6).


Author(s):  
James A. Cochran ◽  
Cheng-Shyong Lee
Keyword(s):  

In a 1975 paper [8], Heinig established the following three inequalities:where A = p/(p + s − λ) with p, s, λ real numbers satisfying p + s > λ,p > 0;where B = p/(2p + sp − λ −1) with p, s, λ real numbers satisfying 2p +sp > λ, + 1, p > 0;where is a sequence of nonnegative real numbers,and C = p[l + l/(p + s−λ)] with p, s, λ real numbers satisfying s > 0, p ≥ 1, and p +s > λ 0.


1966 ◽  
Vol 62 (4) ◽  
pp. 637-642 ◽  
Author(s):  
T. W. Cusick

For a real number λ, ‖λ‖ is the absolute value of the difference between λ and the nearest integer. Let X represent the m-tuple (x1, x2, … xm) and letbe any n linear forms in m variables, where the Θij are real numbers. The following is a classical result of Khintchine (1):For all pairs of positive integers m, n there is a positive constant Г(m, n) with the property that for any forms Lj(X) there exist real numbers α1, α2, …, αn such thatfor all integers x1, x2, …, xm not all zero.


1969 ◽  
Vol 10 (1-2) ◽  
pp. 177-181 ◽  
Author(s):  
I. Danicic

Let K be an open convex domain in n-dimensional Euclidean space, symmetric about the origin O, and of finite Jordan content (volume) V. With K are associated n positive constants λ1, λ2,…,λn, the ‘successive minima of K’ and n linearly independent lattice points (points with integer coordinates) P1, P2, …, Pn (not necessarily unique) such that all lattice points in the body λ,K are linearly dependent on P1, P2, …, Pj-1. The points P1,…, Pj lie in λK provided that λ > λj. For j = 1 this means that λ1K contains no lattice point other than the origin. Obviously


Author(s):  
P. A. P. Moran

Recent investigations by F. Yates (1) in agricultural statistics suggest a mathematical problem which may be formulated as follows. A function f(x) is known to be of bounded variation and Lebesgue integrable on the range −∞ < x < ∞, and its integral over this range is to be determined. In default of any knowledge of the position of the non-negligible values of the function the best that can be done is to calculate the infinite sumfor some suitable δ and an arbitrary origin t, where s ranges over all possible positive and negative integers including zero. S is evidently of period δ in t and ranges over all its values as t varies from 0 to δ. Previous writers (Aitken (2), p. 45, and Kendall (3)) have examined the resulting errors for fixed t. (They considered only symmetrical functions, and supposed one of the lattice points to be located at the centre.) Here we do not restrict ourselves to symmetrical functions and consider the likely departure of S(t) from J (the required integral) when t is a random variable uniformly distributed in (0, δ). It will be shown that S(t) is distributed about J as mean value, with a variance which will be evaluated as a function of δ, the scale of subdivision.


Sign in / Sign up

Export Citation Format

Share Document