Boundary Points of the Numerical Range of an Operator

1975 ◽  
Vol 17 (5) ◽  
pp. 689-692 ◽  
Author(s):  
C.-S. Lin

The purpose of this note is to investigate boundary points of the numerical range of an operator in terms of inner and outer center points. Some applications on commutators are given.Throughout this note, an operator will always mean a bounded linear operator on a Hilbert space X.

1974 ◽  
Vol 17 (2) ◽  
pp. 295-296 ◽  
Author(s):  
Fredric M. Pollack

The numerical range W(T) of a bounded linear operator T on a Hilbert space H is defined byW(T) is always a convex subset of the plane [1] and clearly W(T) is bounded since it is contained in the ball of radius ‖T‖ about the origin. Which non-empty convex bounded subsets of the plane are the numerical range of an operator? The theorem we prove below shows that every non-empty convex bounded subset of the plane is W(T) for some T.


1989 ◽  
Vol 31 (1) ◽  
pp. 71-72
Author(s):  
J. E. Jamison ◽  
Pei-Kee Lin

Let X be a complex Banach space. For any bounded linear operator T on X, the (spatial) numerical range of T is denned as the setIf V(T) ⊆ R, then T is called hermitian. Vidav and Palmer (see Theorem 6 of [3, p. 78] proved that if the set {H + iK:H and K are hermitian} contains all operators, then X is a Hilbert space. It is natural to ask the following question.


1977 ◽  
Vol 29 (5) ◽  
pp. 1010-1030 ◽  
Author(s):  
Takayuki Furuta

In this paper we shall discuss some classes of bounded linear operators on a complex Hilbert space. If T is a bounded linear operator T acting on the complex Hilbert space H, then the following two inequalities always hold:where σ(T) indicates the spectrum of T, W(T) denotes the numerical range of T defined by W(T) = {(Tx, x) : ||x|| = 1 and x ∊ H} and means the closure of W(T) respectively.


2003 ◽  
Vol 4 (2) ◽  
pp. 301
Author(s):  
A. Bourhim

<p>In this talk, to be given at a conference at Seconda Università degli Studi di Napoli in September 2001, we shall describe the set of analytic bounded point evaluations for an arbitrary cyclic bounded linear operator T on a Hilbert space H and shall answer some questions due to L. R. Williams.</p>


2014 ◽  
Vol 11 (3) ◽  
pp. 1267-1273
Author(s):  
Baghdad Science Journal

In this paper, we introduce an exponential of an operator defined on a Hilbert space H, and we study its properties and find some of properties of T inherited to exponential operator, so we study the spectrum of exponential operator e^T according to the operator T.


1989 ◽  
Vol 32 (3) ◽  
pp. 320-326 ◽  
Author(s):  
Domingo A. Herrero

AbstractA bounded linear operator A on a complex, separable, infinite dimensional Hilbert space is called finite if for each . It is shown that the class of all finite operators is a closed nowhere dense subset of


1969 ◽  
Vol 21 ◽  
pp. 1421-1426 ◽  
Author(s):  
Heydar Radjavi

The main result of this paper is that every normal operator on an infinitedimensional (complex) Hilbert space ℋ is the product of four self-adjoint operators; our Theorem 4 is an actually stronger result. A large class of normal operators will be given which cannot be expressed as the product of three self-adjoint operators.This work was motivated by a well-known resul t of Halmos and Kakutani (3) that every unitary operator on ℋ is the product of four symmetries, i.e., operators that are self-adjoint and unitary.1. By “operator” we shall mean bounded linear operator. The space ℋ will be infinite-dimensional (separable or non-separable) unless otherwise specified. We shall denote the class of self-adjoint operators on ℋ by and that of symmetries by .


1971 ◽  
Vol 12 (2) ◽  
pp. 110-117 ◽  
Author(s):  
P. A. Fillmore ◽  
J. P. Williams

The numerical range of a bounded linear operator A on a complex Hilbertspace H is the set W(A) = {(Af, f): ║f║ = 1}. Because it is convex andits closure contains the spectrum of A, the numerical range is often a useful toolin operator theory. However, even when H is two-dimensional, the numerical range of an operator can be large relative to its spectrum, so that knowledge of W(A) generally permits only crude information about A. P. R. Halmos [2] has suggested a refinement of the notion of numerical range by introducing the k-numerical rangesfor k = 1, 2, 3, …. It is clear that W1(A) = W(A). C. A. Berger [2] has shown that Wk(A) is convex.


2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
Karim Hedayatian ◽  
Lotfollah Karimi

A bounded linear operatorTon a Hilbert spaceℋ, satisfying‖T2h‖2+‖h‖2≥2‖Th‖2for everyh∈ℋ, is called a convex operator. In this paper, we give necessary and sufficient conditions under which a convex composition operator on a large class of weighted Hardy spaces is an isometry. Also, we discuss convexity of multiplication operators.


2008 ◽  
Vol 39 (4) ◽  
pp. 347-352 ◽  
Author(s):  
Gyan Prakash Tripathi ◽  
Nand Lal

A bounded linear operator $ T $ on a Hilbert space $ H $ is called antinormal if the distance of $ T $ from the set of all normal operators is equal to norm of $ T $. In this paper, we give a complete characterization of antinormal composition operators on $ \ell^2 $, where $ \ell^2 $ is the Hilbert space of all square summable sequences of complex numbers under standard inner product on it.


Sign in / Sign up

Export Citation Format

Share Document