leavitt path algebras
Recently Published Documents


TOTAL DOCUMENTS

179
(FIVE YEARS 68)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Vol 33 (1) ◽  
pp. 179-184
Author(s):  
R. Hazrat ◽  
Huanhuan Li

For an ample Hausdorff groupoid G \mathcal {G} , and the Steinberg algebra A R ( G ) A_R(\mathcal {G}) with coefficients in the commutative ring R R with unit, the centralizer is described for the subalgebra A R ( U ) A_R(U) with U U an open closed invariant subset of the unit space of  G \mathcal {G} . In particular, it is shown that the algebra of the interior of the isotropy is indeed the centralizer of the diagonal subalgebra of the Steinberg algebra. This will unify several results in the literature, and the corresponding results for Leavitt path algebras follow.


2021 ◽  
Author(s):  
◽  
Ellis Dawson

<p>We investigate strongly graded C*-algebras. We focus on graph C*-algebras and explore the connection between graph C*-algebras and Leavitt path algebras, both of which are $\Z$-graded. It is known that a graphical condition called \emph{Condition (Y)} is necessary and sufficient for Leavitt path algebras to be strongly graded. In this thesis we prove this can be translated to the graph C*-algebra and prove that a graph C*-algebra associated to a row-finite graph is strongly graded if and only if Condition (Y) holds.</p>


2021 ◽  
Author(s):  
◽  
Ellis Dawson

<p>We investigate strongly graded C*-algebras. We focus on graph C*-algebras and explore the connection between graph C*-algebras and Leavitt path algebras, both of which are $\Z$-graded. It is known that a graphical condition called \emph{Condition (Y)} is necessary and sufficient for Leavitt path algebras to be strongly graded. In this thesis we prove this can be translated to the graph C*-algebra and prove that a graph C*-algebra associated to a row-finite graph is strongly graded if and only if Condition (Y) holds.</p>


Author(s):  
Roozbeh Hazrat ◽  
Lia Vaš

If [Formula: see text] is a directed graph and [Formula: see text] is a field, the Leavitt path algebra [Formula: see text] of [Formula: see text] over [Formula: see text] is naturally graded by the group of integers [Formula: see text] We formulate properties of the graph [Formula: see text] which are equivalent with [Formula: see text] being a crossed product, a skew group ring, or a group ring with respect to this natural grading. We state this main result so that the algebra properties of [Formula: see text] are also characterized in terms of the pre-ordered group properties of the Grothendieck [Formula: see text]-group of [Formula: see text]. If [Formula: see text] has finitely many vertices, we characterize when [Formula: see text] is strongly graded in terms of the properties of [Formula: see text] Our proof also provides an alternative to the known proof of the equivalence [Formula: see text] is strongly graded if and only if [Formula: see text] has no sinks for a finite graph [Formula: see text] We also show that, if unital, the algebra [Formula: see text] is strongly graded and graded unit-regular if and only if [Formula: see text] is a crossed product. In the process of showing the main result, we obtain conditions on a group [Formula: see text] and a [Formula: see text]-graded division ring [Formula: see text] equivalent with the requirements that a [Formula: see text]-graded matrix ring [Formula: see text] over [Formula: see text] is strongly graded, a crossed product, a skew group ring, or a group ring. We characterize these properties also in terms of the action of the group [Formula: see text] on the Grothendieck [Formula: see text]-group [Formula: see text]


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Grzegorz Bajor ◽  
Leon van Wyk ◽  
Michał Ziembowski

Abstract Considering prime Leavitt path algebras L K ⁢ ( E ) {L_{K}(E)} , with E being an arbitrary graph with at least two vertices, and K being any field, we construct a class of maximal commutative subalgebras of L K ⁢ ( E ) {L_{K}(E)} such that, for every algebra A from this class, A has zero intersection with the commutative core ℳ K ⁢ ( E ) {\mathcal{M}_{K}(E)} of L K ⁢ ( E ) {L_{K}(E)} defined and studied in [C. Gil Canto and A. Nasr-Isfahani, The commutative core of a Leavitt path algebra, J. Algebra 511 2018, 227–248]. We also give a new proof of the maximality, as a commutative subalgebra, of the commutative core ℳ R ⁢ ( E ) {\mathcal{M}_{R}(E)} of an arbitrary Leavitt path algebra L R ⁢ ( E ) {L_{R}(E)} , where E is an arbitrary graph and R is a commutative unital ring.


Author(s):  
Daniel Gonçalves ◽  
Danilo Royer

We show that, for an arbitrary graph, a regular ideal of the associated Leavitt path algebra is also graded. As a consequence, for a row-finite graph, we obtain that the quotient of the associated Leavitt path by a regular ideal is again a Leavitt path algebra and that Condition (L) is preserved by quotients by regular ideals. Furthermore, we describe the vertex set of a regular ideal and make a comparison between the theory of regular ideals in Leavitt path algebras and in graph C*-algebras.


Sign in / Sign up

Export Citation Format

Share Document