Bezout Domains and Rings with a Distributive Lattice of Right Ideals

1986 ◽  
Vol 38 (2) ◽  
pp. 286-303 ◽  
Author(s):  
H. H. Brungs

It is the purpose of this paper to discuss a construction of right arithmetical (or right D-domains in [5]) domains, i.e., integral domains R for which the lattice of right ideals is distributive (see also [3]). Whereas the commutative rings in this class are precisely the Prüfer domains, not even right and left principal ideal domains are necessarily arithmetical. Among other things we show that a Bezout domain is right arithmetical if and only if all maximal right ideals are two-sided.Any right ideal of a right noetherian, right arithmetical domain is two-sided. This fact makes it possible to describe the semigroup of right ideals in such a ring in a satisfactory way; [3], [5].

1983 ◽  
Vol 26 (1) ◽  
pp. 106-114 ◽  
Author(s):  
David F. Anderson ◽  
David E. Dobbs

AbstractThis article introduces the concept of a condensed domain, that is, an integral domain R for which IJ = {ij: i ∊ I, j ∊ J} for all ideals I and J of R. This concept is used to characterize Bézout domains (resp., principal ideal domains; resp., valuation domains) in suitably larger classes of integral domains. The main technical results state that a condensed domain has trivial Picard group and, if quasilocal, has depth at most 1. Special attention is paid to the Noetherian case and related examples.


1986 ◽  
Vol 29 (1) ◽  
pp. 25-32 ◽  
Author(s):  
David E. Dobbs

AbstractLet R be an integral domain. It is proved that if a nonzero ideal I of R can be generated by n < ∞ elements, then I is invertible (i.e., flat) if and only if I(∩ Rai) = ∩ Iai for all { a1, . . ., a n﹜ ⊂ I. The article's main focus is on torsion-free R-modules E which are LCM-stable in the sense that E(Ra ∩ Rb) = Ea ∩ Eb for all a, b ∈ R. By means of linear relations, LCM-stableness is shown to be equivalent to a weak aspect of flatness. Consequently, if each finitely generated ideal of R may be 2-generated, then each LCM-stable R-module is flat. Finally, LCM-stableness of maximal ideals serves to characterize Prüfer domains, Dedekind domains, principal ideal domains, and Bézout domains amongst suitably larger classes of integral domains.


2020 ◽  
Vol 32 (5) ◽  
pp. 1109-1129
Author(s):  
Dario Spirito

AbstractWe study decompositions of length functions on integral domains as sums of length functions constructed from overrings. We find a standard representation when the integral domain admits a Jaffard family, when it is Noetherian and when it is a Prüfer domains such that every ideal has only finitely many minimal primes. We also show that there is a natural bijective correspondence between singular length functions and localizing systems.


Author(s):  
B. W. Green ◽  
L. van Wyk

AbstractIt is well known that for a ring with identity the Brown-McCoy radical is the maximal small ideal. However, in certain subrings of complete matrix rings, which we call structural matrix rings, the maximal small and minimal essential ideals coincide.In this paper we characterize a class of commutative and a class of non-commutative rings for which this coincidence occurs, namely quotients of Prüfer domains and structural matrix rings over Brown-McCoy semisimple rings. A similarity between these two classes is obtained.


2005 ◽  
Vol 04 (02) ◽  
pp. 195-209 ◽  
Author(s):  
MARCO FONTANA ◽  
EVAN HOUSTON ◽  
THOMAS LUCAS

Call a domain R an sQQR-domain if each simple overring of R, i.e., each ring of the form R[u] with u in the quotient field of R, is an intersection of localizations of R. We characterize Prüfer domains as integrally closed sQQR-domains. In the presence of certain finiteness conditions, we show that the sQQR-property is very strong; for instance, a Mori sQQR-domain must be a Dedekind domain. We also show how to construct sQQR-domains which have (non-simple) overrings which are not intersections of localizations.


2019 ◽  
Vol 14 (2) ◽  
pp. 515-530
Author(s):  
Maria Francis ◽  
Thibaut Verron

AbstractSignature-based algorithms have become a standard approach for Gröbner basis computations for polynomial systems over fields, but how to extend these techniques to coefficients in general rings is not yet as well understood. In this paper, we present a proof-of-concept signature-based algorithm for computing Gröbner bases over commutative integral domains. It is adapted from a general version of Möller’s algorithm (J Symb Comput 6(2–3), 345–359, 1988) which considers reductions by multiple polynomials at each step. This algorithm performs reductions with non-decreasing signatures, and in particular, signature drops do not occur. When the coefficients are from a principal ideal domain (e.g. the ring of integers or the ring of univariate polynomials over a field), we prove correctness and termination of the algorithm, and we show how to use signature properties to implement classic signature-based criteria to eliminate some redundant reductions. In particular, if the input is a regular sequence, the algorithm operates without any reduction to 0. We have written a toy implementation of the algorithm in Magma. Early experimental results suggest that the algorithm might even be correct and terminate in a more general setting, for polynomials over a unique factorization domain (e.g. the ring of multivariate polynomials over a field or a PID).


2018 ◽  
Vol 83 (04) ◽  
pp. 1391-1412 ◽  
Author(s):  
LORNA GREGORY ◽  
SONIA L’INNOCENTE ◽  
GENA PUNINSKI ◽  
CARLO TOFFALORI

AbstractWe provide algebraic conditions ensuring the decidability of the theory of modules over effectively given Prüfer (in particular Bézout) domains with infinite residue fields in terms of a suitable generalization of the prime radical relation. For Bézout domains these conditions are also necessary.


Author(s):  
A. Yassine ◽  
M. J. Nikmehr ◽  
R. Nikandish

Let [Formula: see text] be a commutative ring with identity. In this paper, we introduce the concept of [Formula: see text]-absorbing prime ideals which is a generalization of prime ideals. A proper ideal [Formula: see text] of [Formula: see text] is called [Formula: see text]-absorbing prime if for all nonunit elements [Formula: see text] such that [Formula: see text], then either [Formula: see text] or [Formula: see text]. Some properties of [Formula: see text]-absorbing prime are studied. For instance, it is shown that if [Formula: see text] admits a [Formula: see text]-absorbing prime ideal that is not a prime ideal, then [Formula: see text] is a quasi–local ring. Among other things, it is proved that a proper ideal [Formula: see text] of [Formula: see text] is [Formula: see text]-absorbing prime if and only if the inclusion [Formula: see text] for some proper ideals [Formula: see text] of [Formula: see text] implies that [Formula: see text] or [Formula: see text]. Also, [Formula: see text]-absorbing prime ideals of PIDs, valuation domains, Prufer domains and idealization of a modules are characterized. Finally, an analogous to the Prime Avoidance Theorem and some applications of this theorem are given.


Sign in / Sign up

Export Citation Format

Share Document