Nonexpansive Uniformly Asymptotically Stable Flows are Linear

1981 ◽  
Vol 24 (4) ◽  
pp. 401-407 ◽  
Author(s):  
Ludvik Janos ◽  
Roger C. McCann ◽  
J. L. Solomon

AbstractWe show that if a flow (R, X, π) on a separable metric space (X, d) satisfies (i) the transition mapping π(t, •): X → X is non-expansive for every t ≥ 0; (ii) X contains a globally uniformly asymptotically stable compact invariant subset, then the flow (R, X, π) is linear in the sense that it can be topologically and equivariantly embedded into a flow () on the Hilbert space l2 for which all of the transition mappings are linear operators on l2.

2002 ◽  
Vol 45 (1) ◽  
pp. 60-70 ◽  
Author(s):  
A. N. Dranishnikov ◽  
G. Gong ◽  
V. Lafforgue ◽  
G. Yu

AbstractGromov introduced the concept of uniform embedding into Hilbert space and asked if every separable metric space admits a uniform embedding into Hilbert space. In this paper, we study uniform embedding into Hilbert space and answer Gromov’s question negatively.


Author(s):  
Michael Edelstein ◽  
Raymond D. Holmes

AbstractA collection P of bounded linear operators in l2 is constructed in such a manner that given any separable metric space X, and any countable collection F of continuous self-maps of X, there is a homeomorphism h of X onto a subset of l2 such that for each f ∈ F there is P ∈ P with hf = Ph.While similar results were obtained by Baayen and Dc Groot, our construction makes it possible to impose additional conditions on h (depending on F). For example, if all the members of F are uniformly continuous then h too can be made uniformly continuous.


2020 ◽  
Vol 70 (3) ◽  
pp. 753-758
Author(s):  
Marcel Polakovič

AbstractLet 𝓖D(𝓗) denote the generalized effect algebra consisting of all positive linear operators defined on a dense linear subspace D of a Hilbert space 𝓗. The D-weak operator topology (introduced by other authors) on 𝓖D(𝓗) is investigated. The corresponding closure of the set of bounded elements of 𝓖D(𝓗) is the whole 𝓖D(𝓗). The closure of the set of all unbounded elements of 𝓖D(𝓗) is also the set 𝓖D(𝓗). If Q is arbitrary unbounded element of 𝓖D(𝓗), it determines an interval in 𝓖D(𝓗), consisting of all operators between 0 and Q (with the usual ordering of operators). If we take the set of all bounded elements of this interval, the closure of this set (in the D-weak operator topology) is just the original interval. Similarly, the corresponding closure of the set of all unbounded elements of the interval will again be the considered interval.


1972 ◽  
Vol 13 (1) ◽  
pp. 56-60 ◽  
Author(s):  
B. J. Tomiuk

Ogasawara and Yoshinaga [9] have shown that aB*-algebra is weakly completely continuous (w.c.c.) if and only if it is*-isomorphic to theB*(∞)-sum of algebrasLC(HX), where eachLC(HX)is the algebra of all compact linear operators on the Hilbert spaceHx.As Kaplansky [5] has shown that aB*-algebra isB*-isomorphic to theB*(∞)-sum of algebrasLC(HX)if and only if it is dual, it follows that a5*-algebraAis w.c.c. if and only if it is dual. We have observed that, if only certain key elements of aB*-algebraAare w.c.c, thenAis already dual. This observation constitutes our main theorem which goes as follows.A B*-algebraAis dual if and only if for every maximal modular left idealMthere exists aright identity modulo M that isw.c.c.


1976 ◽  
Vol 20 (2) ◽  
pp. 99-120 ◽  
Author(s):  
N. J. Young

It is a well-known fact that any normed algebra can be represented isometrically as an algebra of operators with the operator norm. As might be expected from the very universality of this property, it is little used in the study of the structure of an algebra. Far more helpful are representations on Hilbert space, though these are correspondingly hard to come by: isometric representations on Hilbert space are not to be expected in general, and even continuous nontrivial representations may fail to exist. The purpose of this paper is to examine a class of representations intermediate in both availability and utility to those already mentioned—namely, representations on reflexive spaces. There certainly are normed algebras which admit isometric representations of the latter type but have not even faithful representations on Hilbert space: the most natural example is the algebra of all continuous linear operators on E where E = lp with 1 < p ≠ 2 < ∞, for Berkson and Porta proved in (2) that if E, F are taken from the spaces lp with 1 < p < ∞ and E ≠ F then the only continuous homomorphism from into is the zero mapping. On the other hand there are also algebras which have no continuous nontrivial representation on any reflexive space—for example the algebra of finite-rank operators on an irreflexive Banach space (see Berkson and Porta (2) or Barnes (1) or Theorem 3, Corollary 1 below).


2009 ◽  
Vol 50 ◽  
Author(s):  
Rimas Banys

A complete separable metric space of functions defined on the positive quadrant of the plane is constructed. The characteristic property of these functions is that at every point x there exist two lines intersecting at this point such that limits limy→x f (y) exist when y approaches x along any path not intersecting these lines. A criterion of compactness of subsets of this space is obtained.


1995 ◽  
Vol 49 (1) ◽  
pp. 143-162 ◽  
Author(s):  
Masakazu TAMASHIRO

Sign in / Sign up

Export Citation Format

Share Document