Uniform Embeddings into Hilbert Space and a Question of Gromov

2002 ◽  
Vol 45 (1) ◽  
pp. 60-70 ◽  
Author(s):  
A. N. Dranishnikov ◽  
G. Gong ◽  
V. Lafforgue ◽  
G. Yu

AbstractGromov introduced the concept of uniform embedding into Hilbert space and asked if every separable metric space admits a uniform embedding into Hilbert space. In this paper, we study uniform embedding into Hilbert space and answer Gromov’s question negatively.

1981 ◽  
Vol 24 (4) ◽  
pp. 401-407 ◽  
Author(s):  
Ludvik Janos ◽  
Roger C. McCann ◽  
J. L. Solomon

AbstractWe show that if a flow (R, X, π) on a separable metric space (X, d) satisfies (i) the transition mapping π(t, •): X → X is non-expansive for every t ≥ 0; (ii) X contains a globally uniformly asymptotically stable compact invariant subset, then the flow (R, X, π) is linear in the sense that it can be topologically and equivariantly embedded into a flow () on the Hilbert space l2 for which all of the transition mappings are linear operators on l2.


2009 ◽  
Vol 50 ◽  
Author(s):  
Rimas Banys

A complete separable metric space of functions defined on the positive quadrant of the plane is constructed. The characteristic property of these functions is that at every point x there exist two lines intersecting at this point such that limits limy→x f (y) exist when y approaches x along any path not intersecting these lines. A criterion of compactness of subsets of this space is obtained.


1995 ◽  
Vol 49 (1) ◽  
pp. 143-162 ◽  
Author(s):  
Masakazu TAMASHIRO

1994 ◽  
Vol 31 (04) ◽  
pp. 958-978 ◽  
Author(s):  
Sidney I. Resnick ◽  
Rishin Roy

In this paper, we develop the probabilistic foundations of the dynamic continuous choice problem. The underlying choice set is a compact metric space E such as the unit interval or the unit square. At each time point t, utilities for alternatives are given by a random function . To achieve a model of dynamic continuous choice, the theory of classical vector-valued extremal processes is extended to super-extremal processes Y = {Yt, t > 0}. At any t > 0, Y t is a random upper semicontinuous function on a locally compact, separable, metric space E. General path properties of Y are discussed and it is shown that Y is Markov with state-space US(E). For each t > 0, Y t is associated. For a compact metric E, we consider the argmax process M = {Mt, t > 0}, where . In the dynamic continuous choice application, the argmax process M represents the evolution of the set of random utility maximizing alternatives. M is a closed set-valued random process, and its path properties are investigated.


1994 ◽  
Vol 17 (3) ◽  
pp. 447-450 ◽  
Author(s):  
Janina Ewert

The main result of this paper is that any functionfdefined on a perfect Baire space(X,T)with values in a separable metric spaceYis cliquish (has the Baire property) iff it is a uniform (pointwise) limit of sequence{fn:n≥1}of simply continuous functions. This result is obtained by a change of a topology onXand showing that a functionf:(X,T)→Yis cliquish (has the Baire property) iff it is of the Baire class 1 (class 2) with respect to the new topology.


2015 ◽  
Vol 93 (1) ◽  
pp. 146-151 ◽  
Author(s):  
LEONID V. KOVALEV

Finite subset spaces of a metric space $X$ form a nested sequence under natural isometric embeddings $X=X(1)\subset X(2)\subset \cdots \,$. We prove that this sequence admits Lipschitz retractions $X(n)\rightarrow X(n-1)$ when $X$ is a Hilbert space.


2017 ◽  
Vol 5 (1) ◽  
pp. 138-151 ◽  
Author(s):  
David Bryant ◽  
André Nies ◽  
Paul Tupper

AbstractThe Urysohn space is a separable complete metric space with two fundamental properties: (a) universality: every separable metric space can be isometrically embedded in it; (b) ultrahomogeneity: every finite isometry between two finite subspaces can be extended to an auto-isometry of the whole space. The Urysohn space is uniquely determined up to isometry within separable metric spaces by these two properties. We introduce an analogue of the Urysohn space for diversities, a recently developed variant of the concept of a metric space. In a diversity any finite set of points is assigned a non-negative value, extending the notion of a metric which only applies to unordered pairs of points.We construct the unique separable complete diversity that it is ultrahomogeneous and universal with respect to separable diversities.


Sign in / Sign up

Export Citation Format

Share Document