Asymptotic Expansions for Regularization Methods of Linear Fully Implicit Differential-Algebraic Equations

1994 ◽  
Vol 13 (3) ◽  
pp. 513-535 ◽  
Author(s):  
Michael Hanke
Author(s):  
Hajrudin Pasic

Abstract Presented is an algorithm suitable for numerical solutions of multibody mechanics problems. When s-stage fully implicit Runge-Kutta (RK) method is used to solve these problems described by a system of n ordinary differential equations (ODE), solution of the resulting algebraic system requires 2s3 n3 / 3 operations. In this paper we present an efficient algorithm, whose formulation differs from the traditional RK method. The procedure for uncoupling the algebraic system into a block-diagonal matrix with s blocks of size n is derived for any s. In terms of number of multiplications, the algorithm is about s2 / 2 times faster than the original, nondiagonalized system, as well as s2 times in terms of number of additions/multiplications. With s = 3 the method has the same precision and stability property as the well-known RADAU5 algorithm. However, our method is applicable with any s and not only to the explicit ODEs My′ = f(x, y), where M = constant matrix, but also to the general implicit ODEs of the form f (x, y, y′) = 0. In the solution procedure y is assumed to have a form of the algebraic polynomial whose coefficients are found by using the collocation technique. A proper choice of locations of collocation points guarantees good precision/stability properties. If constructed such as to be L-stable, the method may be used for solving differential-algebraic equations (DAEs). The application is illustrated by a constrained planar manipulator problem.


2020 ◽  
Author(s):  
Gilles Mpembele ◽  
Jonathan Kimball

<div>The analysis of power system dynamics is usually conducted using traditional models based on the standard nonlinear differential algebraic equations (DAEs). In general, solutions to these equations can be obtained using numerical methods such as the Monte Carlo simulations. The use of methods based on the Stochastic Hybrid System (SHS) framework for power systems subject to stochastic behavior is relatively new. These methods have been successfully applied to power systems subjected to</div><div>stochastic inputs. This study discusses a class of SHSs referred to as Markov Jump Linear Systems (MJLSs), in which the entire dynamic system is jumping between distinct operating points, with different local small-signal dynamics. The numerical application is based on the analysis of the IEEE 37-bus power system switching between grid-tied and standalone operating modes. The Ordinary Differential Equations (ODEs) representing the evolution of the conditional moments are derived and a matrix representation of the system is developed. Results are compared to the averaged Monte Carlo simulation. The MJLS approach was found to have a key advantage of being far less computational expensive.</div>


Author(s):  
Achim Ilchmann ◽  
Jonas Kirchhoff

AbstractWe investigate genericity of various controllability and stabilizability concepts of linear, time-invariant differential-algebraic systems. Based on well-known algebraic characterizations of these concepts (see the survey article by Berger and Reis (in: Ilchmann A, Reis T (eds) Surveys in differential-algebraic equations I, Differential-Algebraic Equations Forum, Springer, Berlin, pp 1–61. 10.1007/978-3-642-34928-7_1)), we use tools from algebraic geometry to characterize genericity of controllability and stabilizability in terms of matrix formats.


Sign in / Sign up

Export Citation Format

Share Document