Mathematics of Control Signals and Systems
Latest Publications


TOTAL DOCUMENTS

614
(FIVE YEARS 80)

H-INDEX

51
(FIVE YEARS 3)

Published By Springer-Verlag

1435-568x, 0932-4194

Author(s):  
Konsta Huhtala ◽  
Lassi Paunonen ◽  
Weiwei Hu

AbstractWe study a temperature and velocity output tracking problem for a two-dimensional room model with the fluid dynamics governed by the linearized translated Boussinesq equations. Additionally, the room model includes finite-dimensional models for actuation and sensing dynamics; thus, the complete model dynamics are governed by an ODE–PDE–ODE cascade. As the main contribution, we design a low-dimensional internal model-based controller for robust output tracking of the room model. The controller’s performance is demonstrated through a numerical example.


Author(s):  
Fritz Colonius ◽  
Alexandre J. Santana ◽  
Juliana Setti

AbstractFor homogeneous bilinear control systems, the control sets are characterized using a Lie algebra rank condition for the induced systems on projective space. This is based on a classical Diophantine approximation result. For affine control systems, the control sets around the equilibria for constant controls are characterized with particular attention to the question when the control sets are unbounded.


Author(s):  
Shenyu Liu ◽  
Aneel Tanwani ◽  
Daniel Liberzon

AbstractThe problem of input-to-state stability (ISS) and its integral version (iISS) are considered for switched nonlinear systems with inputs, resets and possibly unstable subsystems. For the dissipation inequalities associated with the Lyapunov function of each subsystem, it is assumed that the supply functions, which characterize the decay rate and ISS/iISS gains of the subsystems, are nonlinear. The change in the value of Lyapunov functions at switching instants is described by a sum of growth and gain functions, which are also nonlinear. Using the notion of average dwell-time (ADT) to limit the number of switching instants on an interval, and the notion of average activation time (AAT) to limit the activation time for unstable systems, a formula relating ADT and AAT is derived to guarantee ISS/iISS of the switched system. Case studies of switched systems with saturating dynamics and switched bilinear systems are included for illustration of the results.


Author(s):  
Simone Göttlich ◽  
Claudia Totzeck

AbstractWe propose a neural network approach to model general interaction dynamics and an adjoint-based stochastic gradient descent algorithm to calibrate its parameters. The parameter calibration problem is considered as optimal control problem that is investigated from a theoretical and numerical point of view. We prove the existence of optimal controls, derive the corresponding first-order optimality system and formulate a stochastic gradient descent algorithm to identify parameters for given data sets. To validate the approach, we use real data sets from traffic and crowd dynamics to fit the parameters. The results are compared to forces corresponding to well-known interaction models such as the Lighthill–Whitham–Richards model for traffic and the social force model for crowd motion.


Author(s):  
Sergey Dashkovskiy ◽  
Vitalii Slynko

AbstractIn this work, we consider impulsive dynamical systems evolving on an infinite-dimensional space and subjected to external perturbations. We look for stability conditions that guarantee the input-to-state stability for such systems. Our new dwell-time conditions allow the situation, where both continuous and discrete dynamics can be unstable simultaneously. Lyapunov like methods are developed for this purpose. Illustrative finite and infinite dimensional examples are provided to demonstrate the application of the main results. These examples cannot be treated by any other published approach and demonstrate the effectiveness of our results.


Sign in / Sign up

Export Citation Format

Share Document