On XFEM Integration within an Object-Oriented Finite Element Code

Author(s):  
R. Chamrová ◽  
B. Patzák
2001 ◽  
Vol 32 (10-11) ◽  
pp. 759-767 ◽  
Author(s):  
B Patzák ◽  
Z Bittnar

1994 ◽  
Vol 37 (22) ◽  
pp. 3921-3937 ◽  
Author(s):  
Gordon W. Zeglinski ◽  
Ray P. S. Han ◽  
Peter Aitchison

2020 ◽  
Vol 60 (1) ◽  
pp. 25-37
Author(s):  
Michal Bošanský ◽  
Bořek Patzák

The efficient codes can take an advantage of multiple threads and/or processing nodes to partition a work that can be processed concurrently. This can reduce the overall run-time or make the solution of a large problem feasible. This paper deals with evaluation of different parallelization strategies of assembly operations for global vectors and matrices, which are one of the critical operations in any finite element software. Different assembly strategies for systems with a shared memory model are proposed and evaluated, using Open Multi-Processing (OpenMP), Portable Operating System Interface (POSIX), and C++11 Threads. The considered strategies are based on simple synchronization directives, various block locking algorithms and, finally, on smart locking free processing based on a colouring algorithm. The different strategies were implemented in a free finite element code with object-oriented architecture OOFEM [1].


Sign in / Sign up

Export Citation Format

Share Document