JASMIN-based Two-dimensional Adaptive Combined Preconditioner for Radiation Diffusion Equations in Inertial Fusion Research

2017 ◽  
Vol 7 (3) ◽  
pp. 495-507
Author(s):  
Xiaoqiang Yue ◽  
Xiaowen Xu ◽  
Shi Shu

AbstractWe present a JASMIN-based two-dimensional parallel implementation of an adaptive combined preconditioner for the solution of linear problems arising in the finite volume discretisation of one-group and multi-group radiation diffusion equations. We first propose the attribute of patch-correlation for cells of a two-dimensional monolayer piecewise rectangular structured grid without any suspensions based on the patch hierarchy of JASMIN, classify and reorder these cells via their attributes, and derive the conversion of cell-permutations. Using two cell-permutations, we then construct some parallel incomplete LU factorisation and substitution algorithms, to provide our parallel -GMRES solver with the help of the default BoomerAMG in the HYPRE library. Numerical results demonstrate that our proposed parallel incomplete LU preconditioner (ILU) is of higher efficiency than the counterpart in the Euclid library, and that the proposed parallel -GMRES solver is more robust and more efficient than the default BoomerAMG-GMRES solver.

2016 ◽  
Vol 9 (3) ◽  
pp. 470-496 ◽  
Author(s):  
Yanni Gao ◽  
Xiukun Zhao ◽  
Yonghai Li

AbstractTwo-dimensional three-temperature (2-D 3-T) radiation diffusion equations are widely used to approximately describe the evolution of radiation energy within a multi-material system and explain the exchange of energy among electrons, ions and photons. Their highly nonlinear, strong discontinuous and tightly coupled phenomena always make the numerical solution of such equations extremely challenging. In this paper, we construct two finite volume element schemes both satisfying the discrete conservation property. One of them can well preserve the positivity of analytical solutions, while the other one does not satisfy this property. To fix this defect, two as repair techniques are designed. In addition, as the numerical simulation of 2-D 3-T equations is very time consuming, we also devise a mesh adaptation algorithm to reduce the cost. Numerical results show that these new methods are practical and efficient in solving this kind of problems.


2015 ◽  
Vol 18 (5) ◽  
pp. 1313-1335 ◽  
Author(s):  
Xiaoqiang Yue ◽  
Shi Shu ◽  
Xiao wen Xu ◽  
Zhiyang Zhou

AbstractThe paper aims to develop an effective preconditioner and conduct the convergence analysis of the corresponding preconditioned GMRES for the solution of discrete problems originating from multi-group radiation diffusion equations. We firstly investigate the performances of the most widely used preconditioners (ILU(k) and AMG) and their combinations (Bco and Bco), and provide drawbacks on their feasibilities. Secondly, we reveal the underlying complementarity of ILU(k) and AMG by analyzing the features suitable for AMG using more detailed measurements on multiscale nature of matrices and the effect of ILU(k) on multiscale nature. Moreover, we present an adaptive combined preconditioner Bcoα involving an improved ILU(0) along with its convergence constraints. Numerical results demonstrate that Bcoα-GMRES holds the best robustness and efficiency. At last, we analyze the convergence of GMRES with combined preconditioning which not only provides a persuasive support for our proposed algorithms, but also updates the existing estimation theory on condition numbers of combined preconditioned systems.


Sign in / Sign up

Export Citation Format

Share Document