A Filtered-Davidson Method for Large Symmetric Eigenvalue Problems

2017 ◽  
Vol 7 (1) ◽  
pp. 21-37 ◽  
Author(s):  
Cun-Qiang Miao

AbstractFor symmetric eigenvalue problems, we constructed a three-term recurrence polynomial filter by means of Chebyshev polynomials. The new filtering technique does not need to solve linear systems and only needs matrix-vector products. It is a memory conserving filtering technique for its three-term recurrence relation. As an application, we use this filtering strategy to the Davidson method and propose the filtered-Davidson method. Through choosing suitable shifts, this method can gain cubic convergence rate locally. Theory and numerical experiments show the efficiency of the new filtering technique.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jutao Zhao ◽  
Pengfei Guo

The Jacobi–Davidson iteration method is very efficient in solving Hermitian eigenvalue problems. If the correction equation involved in the Jacobi–Davidson iteration is solved accurately, the simplified Jacobi–Davidson iteration is equivalent to the Rayleigh quotient iteration which achieves cubic convergence rate locally. When the involved linear system is solved by an iteration method, these two methods are also equivalent. In this paper, we present the convergence analysis of the simplified Jacobi–Davidson method and present the estimate of iteration numbers of the inner correction equation. Furthermore, based on the convergence factor, we can see how the accuracy of the inner iteration controls the outer iteration.


2013 ◽  
Vol 23 (1) ◽  
pp. 117-129 ◽  
Author(s):  
Jiawen Bian ◽  
Huiming Peng ◽  
Jing Xing ◽  
Zhihui Liu ◽  
Hongwei Li

This paper considers parameter estimation of superimposed exponential signals in multiplicative and additive noise which are all independent and identically distributed. A modified Newton-Raphson algorithm is used to estimate the frequencies of the considered model, which is further used to estimate other linear parameters. It is proved that the modified Newton- Raphson algorithm is robust and the corresponding estimators of frequencies attain the same convergence rate with Least Squares Estimators (LSEs) under the same noise conditions, but it outperforms LSEs in terms of the mean squared errors. Finally, the effectiveness of the algorithm is verified by some numerical experiments.


Sign in / Sign up

Export Citation Format

Share Document