scholarly journals Solving Optimal Power Flow Using Modified Bacterial Foraging Algorithm Considering FACTS Devices

2014 ◽  
Vol 02 (04) ◽  
pp. 639-646 ◽  
Author(s):  
K. Ravi ◽  
C. Shilaja ◽  
B. Chitti Babu ◽  
D. P. Kothari
2012 ◽  
Vol 63 (5) ◽  
pp. 316-321 ◽  
Author(s):  
Fatiha Lakdja ◽  
Fatima Zohra Gherbi ◽  
Redouane Berber ◽  
Houari Boudjella

Very few publications have been focused on the mathematical modeling of Flexible Alternating Current Transmission Systems (FACTS) -devices in optimal power flow analysis. A Thyristor Controlled Series Capacitors (TCSC) model has been proposed, and the model has been implemented in a successive QP. The mathematical models for TCSC have been established, and the Optimal Power Flow (OPF) problem with these FACTS-devices is solved by Newtons method. This article employs the Newton- based OPF-TCSC solver of MATLAB Simulator, thus it is essential to understand the development of OPF and the suitability of Newton-based algorithms for solving OPF-TCSC problem. The proposed concept was tested and validated with TCSC in twenty six-bus test system. Result shows that, when TCSC is used to relieve congestion in the system and the investment on TCSC can be recovered, with a new and original idea of integration.


2010 ◽  
Vol 1 (3) ◽  
pp. 34-50 ◽  
Author(s):  
P. K. Roy ◽  
S. P. Ghoshal ◽  
S. S. Thakur

This paper presents two new Particle swarm optimization methods to solve optimal power flow (OPF) in power system incorporating flexible AC transmission systems (FACTS). Two types of FACTS devices, thyristor-controlled series capacitor (TCSC) and thyristor controlled phase shifting (TCPS), are considered. In this paper, the problems of OPF with FACTS are solved by using particle swarm optimization with the inertia weight approach (PSOIWA), real coded genetic algorithm (RGA), craziness based particle swarm optimization (CRPSO), and turbulent crazy particle swarm optimization (TRPSO). The proposed methods are implemented on modified IEEE 30-bus system for four different cases. The simulation results show better solution quality and computation efficiency of TRPSO and CRPSO algorithms over PSOIWA and RGA. The study also shows that FACTS devices are capable of providing an economically attractive solution to OPF problems.


Sign in / Sign up

Export Citation Format

Share Document