dynamic loads
Recently Published Documents


TOTAL DOCUMENTS

1871
(FIVE YEARS 496)

H-INDEX

44
(FIVE YEARS 7)

Author(s):  
Kamale G ◽  
Satheeshkumar K R P

Soil-structure interaction(SSI) analysis is the study of the dynamic response of a structure as influenced by the interaction with the surrounding soil. The SSI response is sensitive to the characteristics of the soil, structures, and ground motion, as well as the depth of embedment. The concept of soil-structure interaction was introduced , and the research methods were discussed. This report presents a synthetic of the body of knowledge contained in SSI literature, which has been distilled into a concise narrative and harmonized under a consistent set of variables and units. Specific techniques are described by which SSI phenomena can be simulated in engineering practice, and recommendations for modeling seismic soil-structure interaction effects on building structures are provided. An attempt was made to summarize the all terms in this area of study.


2022 ◽  
Vol 1049 ◽  
pp. 108-113
Author(s):  
Nikolay Kurlaev ◽  
Ahmed Soliman Mohamed Sherif ◽  
Nikolay Ryngach

Bellows are a cylindrical shell with a corrugated part, widely used in aviation engineering as a movable sealing element to balance pressure and temperature differences, which ensure continuous and accurate system operation. The use of bellows expansion joints provides reliable and effective protection of pipelines from static and dynamic loads arising from deformations and vibration. Welded-edge bellows are a popular choice for regulating and controlling fuel supply in aircraft devices. The ability of the compensator to perceive deformations is determined by its assigned operating time, which describes how many cycles, and with what amplitude, the bellows compensator perceives without damage. A method for stamping bellows from tubular billets by using magnetic-pulse field in rigid dies, including sequential shaping of corrugations by distributing the internal magnetic pressure with axial movement of the free end of a tubular billet, characterized in that the material of the tubular billet for shaping corrugations is selected in accordance with its relative elongation.


2022 ◽  
Vol 906 ◽  
pp. 7-15
Author(s):  
Dmitry Utkin

On the basis of theoretical and experimental studies, the prerequisites and the method of calculation of bent and compressed-curved reinforced concrete structures with zone reinforcement made of steel fiber, working under static and short-term dynamic loads, are formulated. In the developed method for calculating the strength of normal and inclined sections, a nonlinear deformation model is implemented, which is based on the actual deformation diagrams of materials. The developed calculation method is brought to the program of calculation of reinforced concrete structures with zone reinforcement of steel fiber under short-term dynamic loading, taking into account the inelastic properties of materials. The numerical studies made it possible to determine the influence of various parameters of steel-fiber reinforcement on the strength of reinforced concrete elements. To confirm the main results of the developed calculation method, experimental studies of reinforced concrete beam structures reinforced with conventional reinforcement and a zone steel-fiber layer are planned and carried out. Experimental studies were carried out under static and short-term dynamic loads. As a result of the conducted experiments, data were obtained that characterize the process of destruction, deformation and cracking of steel-reinforced concrete elements under such types of loading. The dependences of changes in the energy intensity of reinforced concrete structures with zone reinforcement made of steel fiber in the compressed and stretched cross-section zones under dynamic loading are obtained. The effectiveness of the use of fiber reinforcement of normal and inclined sections of bent and compressed-curved elements to improve the strength and deformative.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Fei Guo ◽  
Heng Cai ◽  
Huifang Li

In the current vehicle-bridge dynamics research studies, displacement impact coefficients are often used to replace the moment and shear force impact coefficients, and the vehicle model is also simplified as a moving-load model without considering the contribution of vehicle stiffness and damping to the system in some concerned research studies, which cannot really reflect the mechanical behavior of the structures under vehicle dynamic loads. This paper presents a vehicle-bridge coupling model for the prediction of dynamic responses and impact coefficient of the long-span curved bending beam bridge. The element stiffness matrix and mass matrix of a curved box girder bridge with 9 freedom degrees are directly deduced based on the principle of virtual work and dynamic finite element theory. The vibration equations of vehicle-bridge coupling are established by introducing vehicle mode with 7 freedom degrees. The Newmark-β method is adopted to solve vibration response of the system under vehicle dynamic loads, and the influences of flatness of bridge surface, vehicle speed, load weight, and primary beam stiffness on the impact coefficient are comprehensively discussed. The results indicate that the impact coefficient presents a nonlinear increment as the flatness of bridge surface changes from good to terrible. The vehicle-bridge coupling system resonates when the vehicle speeds reach 60 km/h and 100 km/h. The moment design value will maximally increase by 2.89%, and the shear force design value will maximally decrease by 34.9% when replacing moment and shear force impact coefficients with the displacement impact coefficient for the section internal force design. The load weight has a little influence on the impact coefficient; the displacement and moment impact coefficients are decreased with an increase in primary beam stiffness, while the shear force impact coefficient is increased with an increase in primary beam stiffness. The theoretical results presented in this paper agree well with the ANSYS results.


Author(s):  
Çağrı Oruç ◽  
Okan Özdemir

Control arms are subjected to static and dynamic loads in car during their lifetime. Recent increases in loads in which control arms are subjected, are not complying with the low-weight design targets expected by auto makers. In this study, buckling behavior of control arms which have been produced with Si particle reinforced aluminum based metal composite material have been investigated and compared with the performance of control arms that are produced with standard aluminum alloy. The results revealed that mechanical properties of control arm housings with 10% Sip MMC material are lower than standard 6110 alloy due to different process parameters. Elasticity of modulus of control arm housings with 10% Sip MMC material are approximately 7% higher than standard aluminum alloys. Buckling results of control arms with 10% Sip MMC material are around 25% lower that control arms with standard 6110 alloy. Also, a second darker phase was found in the microstructure.


2022 ◽  
pp. 0309524X2110653
Author(s):  
Philippe Giguère ◽  
John R Wagner

A total of 27 test profiles from the IEC 61400-1 design load cases were tested using a 7.5-MW wind turbine drivetrain test bench and two multi-megawatt wind turbine drivetrains. Each test profile consisted of simultaneous vertical, lateral, and longitudinal forces, yawing and nodding bending moment, and rotational speed. These test-bench inputs were compared with the forces, bending moments, and speed that were applied to the wind turbine drivetrains to quantify the test-bench tracking error. This tracking error was quantified for a range of ramp-rate limits of the yawing and nodding bending moments. The experimental results were compared with predictions from an evaluation method for the capability of wind turbine drivetrain test benches to replicate dynamic loads. The method’s predictive capability was found to be sufficient for the goal of early screening and its formulation is applicable to any wind turbine drivetrain test bench and drivetrain design.


2022 ◽  
Author(s):  
A.E. Litvinov

Abstract. The article presents a method for producing a nanostructured wear-resistant high-hard coating with high physicomechanical and strength characteristics, resistance to shock and vibration loads. The result is an increase in adhesion between the substrate and the coating, as well as an increase in microhardness. One of the common methods of metal cutting is band-cutting machines that use closed band saws as cutting tools. Since materials with high physicomechanical characteristics (hardness, strength, etc.) are increasingly being used in modern production, which significantly complicates the cutting process and makes increased demands on the cutting tool. To expand the range of processed materials for which the productive use of band-cutting machines is possible, it became necessary to create a band saw with higher cutting characteristics. At the same time, the specificity of the working conditions of the band saw shows that the blade should have such characteristics as increased vibration resistance, resistance to alternating and dynamic loads, and the cutting part of the saw should have increased resistance to shock, dynamic, alternating loads, have high hardness, as well as increased wear resistance.


Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 38
Author(s):  
Longye Pan ◽  
Xianglong Guan ◽  
Xingwei Luan ◽  
Yajun Huang ◽  
Ruwei Zhang ◽  
...  

Tilt bulldozing generates unbalanced loads on two push arms, which leads to the service lives of the two push arms being different. Because the push arms rotate in triaxial directions during tilt bulldozing, it is difficult to accurately analyze the fatigue life of the push arm with one specific boundary condition and loading history. Therefore, a fatigue analysis of the push arms under tilt bulldozing conditions is proposed based on co-simulation of RecurDyn-EDEM-AMESim in this paper. The control of tilt bulldozing conditions is realized automatically according to the tilt angle and blade depth. The dynamic loads of the push arms are accurately calculated in this virtual model. Subsequently, the stress–time histories are obtained to investigate the fatigue lives of push arms. Both the overall damage and the initiation positions of the cracks are predicted herein. It is determined that the fatigue lives of the right and left push arms are 7,317.84 h and 39,381.89 h, respectively. Thus, the life of the push arm on the blade’s tilted side is reduced by 81.42% compared to the other side. Additionally, experimental tests are conducted to verify the accuracy of the virtual model. Analysis results indicate that the strains of the push arms according to the virtual simulation are close to those measured in the experiments.


2022 ◽  
Vol 58 (4) ◽  
pp. 222-237
Author(s):  
Costel Iulian Mocanu ◽  
Alin Pohilca ◽  
Liviu Moise ◽  
Daniela Ioana Tudose

Glass reinforced plastic, so called GRP, is a composite material made of glass strands called fibbers woven together to create a flexible fabric. GRP is a lightweight material with many and diverse applications ranging from the manufacture of reservoirs for different liquids to the manufacture of boats, yachts, chairs and even children playground furniture. The behaviour of this material under static and dynamic loads is still raising interest from the scientific community and a large number of researchers. This continued interest is due to the material versatility for different applications depending on its manufacture process that has a significant weigh-in in the material mechanical properties. These resulting mechanical properties need to be carefully analysed and benchmarked prior to using the obtained material in commercial applications. The scope of this research study is to analyse the behaviour of glass reinforced plastic plate panel with reinforcements on one and two directions under static and dynamic loads employing both experimental and numerical methods for results validation. The methods used in this research study for the dynamic loads can also be applied successfully to other composite materials. Additionally, the stress plots have been analysed in iteration in order to ensure the most optimal reinforcement pattern.


Sign in / Sign up

Export Citation Format

Share Document