scholarly journals Review of Research on Text Sentiment Analysis Based on Deep Learning

OALib ◽  
2020 ◽  
Vol 07 (03) ◽  
pp. 1-8
Author(s):  
Wenling Li ◽  
Bo Jin ◽  
Yu Quan
Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3092
Author(s):  
Hyona Yu ◽  
Jihyun Bae ◽  
Jiyeon Choi ◽  
Hyungseok Kim

As COVID-19 solidifies its presence in everyday life, the interest in mental health is growing, resulting in the necessity of sentiment analysis. A smart mirror is suitable for encouraging mental comfort due to its approachability and scalability as an in-home AI device. From the aspect of natural language processing (NLP), sentiment analysis for Korean lacks an emotion dataset regarding everyday conversation. Its significant differences from English in terms of language structure make implementation challenging. The proposed smart mirror LUX provides Korean text sentiment analysis with the deep learning model, which examines GRU, LSTM, CNN, Bi-LSTM, and Bi-GRU networks. There are four emotional labels: anger, sadness, neutral, and happiness. For each emotion, there are three possible interactive responses: reciting wise sayings, playing music, and sympathizing. The implemented smart mirror also includes more-typical functions, such as a wake-up prompt, a weather reporting function, a calendar, a news reporting function, and a clock.


2021 ◽  
Vol 11 (22) ◽  
pp. 10774
Author(s):  
Hongchan Li ◽  
Yu Ma ◽  
Zishuai Ma ◽  
Haodong Zhu

With the rapid increase of public opinion data, the technology of Weibo text sentiment analysis plays a more and more significant role in monitoring network public opinion. Due to the sparseness and high-dimensionality of text data and the complex semantics of natural language, sentiment analysis tasks face tremendous challenges. To solve the above problems, this paper proposes a new model based on BERT and deep learning for Weibo text sentiment analysis. Specifically, first using BERT to represent the text with dynamic word vectors and using the processed sentiment dictionary to enhance the sentiment features of the vectors; then adopting the BiLSTM to extract the contextual features of the text, the processed vector representation is weighted by the attention mechanism. After weighting, using the CNN to extract the important local sentiment features in the text, finally the processed sentiment feature representation is classified. A comparative experiment was conducted on the Weibo text dataset collected during the COVID-19 epidemic; the results showed that the performance of the proposed model was significantly improved compared with other similar models.


2019 ◽  
Vol 11 (4) ◽  
pp. 96 ◽  
Author(s):  
Li ◽  
Liu ◽  
Zhang ◽  
Liu

Text sentiment analysis is an important but challenging task. Remarkable success has been achieved along with the wide application of deep learning methods, but deep learning methods dealing with text sentiment classification tasks cannot fully exploit sentiment linguistic knowledge, which hinders the development of text sentiment analysis. In this paper, we propose a sentiment-feature-enhanced deep neural network (SDNN) to address the problem by integrating sentiment linguistic knowledge into a deep neural network via a sentiment attention mechanism. Specifically, first we introduce a novel sentiment attention mechanism to help select the crucial sentiment-word-relevant context words by leveraging the sentiment lexicon in an attention mechanism, which bridges the gap between traditional sentiment linguistic knowledge and current popular deep learning methods. Second, we develop an improved deep neural network to extract sequential correlation information and text local features by combining bidirectional gated recurrent units with a convolutional neural network, which further enhances the ability of comprehensive text representation learning. With this design, the SDNN model can generate a powerful semantic representation of text to improve the performance of text sentiment classification tasks. Extensive experiments were conducted to evaluate the effectiveness of the proposed SDNN model on two real-world datasets with a binary-sentiment-label and a multi-sentiment-label. The experimental results demonstrated that the SDNN achieved substantially better performance than the strong competitors for text sentiment classification tasks.


Sign in / Sign up

Export Citation Format

Share Document