deep learning model
Recently Published Documents


TOTAL DOCUMENTS

2734
(FIVE YEARS 2483)

H-INDEX

33
(FIVE YEARS 24)

2022 ◽  
Vol 13 (2) ◽  
pp. 1-20
Author(s):  
Luo He ◽  
Hongyan Liu ◽  
Yinghui Yang ◽  
Bei Wang

We develop a deep learning model based on Long Short-term Memory (LSTM) to predict blood pressure based on a unique data set collected from physical examination centers capturing comprehensive multi-year physical examination and lab results. In the Multi-attention Collaborative Deep Learning model (MAC-LSTM) we developed for this type of data, we incorporate three types of attention to generate more explainable and accurate results. In addition, we leverage information from similar users to enhance the predictive power of the model due to the challenges with short examination history. Our model significantly reduces predictive errors compared to several state-of-the-art baseline models. Experimental results not only demonstrate our model’s superiority but also provide us with new insights about factors influencing blood pressure. Our data is collected in a natural setting instead of a setting designed specifically to study blood pressure, and the physical examination items used to predict blood pressure are common items included in regular physical examinations for all the users. Therefore, our blood pressure prediction results can be easily used in an alert system for patients and doctors to plan prevention or intervention. The same approach can be used to predict other health-related indexes such as BMI.


2022 ◽  
Vol 93 ◽  
pp. 101752
Author(s):  
Gary Conley ◽  
Stephanie Castle Zinn ◽  
Taylor Hanson ◽  
Krista McDonald ◽  
Nicole Beck ◽  
...  

2022 ◽  
Vol 20 (3) ◽  
pp. 458-464
Author(s):  
Jose Vitor Santos Silva ◽  
Leonardo Matos Matos ◽  
Flavio Santos ◽  
Helisson Oliveira Magalhaes Cerqueira ◽  
Hendrik Macedo ◽  
...  

Author(s):  
Hamza Abbad ◽  
Shengwu Xiong

Automatic diacritization is an Arabic natural language processing topic based on the sequence labeling task where the labels are the diacritics and the letters are the sequence elements. A letter can have from zero up to two diacritics. The dataset used was a subset of the preprocessed version of the Tashkeela corpus. We developed a deep learning model composed of a stack of four bidirectional long short-term memory hidden layers of the same size and an output layer at every level. The levels correspond to the groups that we classified the diacritics into (short vowels, double case-endings, Shadda, and Sukoon). Before training, the data were divided into input vectors containing letter indexes and outputs vectors containing the indexes of diacritics regarding their groups. Both input and output vectors are concatenated, then a sliding window operation with overlapping is performed to generate continuous and fixed-size data. Such data is used for both training and evaluation. Finally, we realize some tests using the standard metrics with all of their variations and compare our results with two recent state-of-the-art works. Our model achieved 3% diacritization error rate and 8.99% word error rate when including all letters. We have also generated the confusion matrix to show the performances per output and analyzed the mismatches of the first 500 lines to classify the model errors according to their linguistic nature.


Author(s):  
Kannuru Padmaja

Abstract: In this paper, we present the implementation of Devanagari handwritten character recognition using deep learning. Hand written character recognition gaining more importance due to its major contribution in automation system. Devanagari script is one of various languages script in India. It consists of 12 vowels and 36 consonants. Here we implemented the deep learning model to recognize the characters. The character recognition mainly five steps: pre-processing, segmentation, feature extraction, prediction, post-processing. The model will use convolutional neural network to train the model and image processing techniques to use the character recognition and predict the accuracy of rcognition. Keywords: convolutional neural network, character recognition, Devanagari script, deep learning.


Author(s):  
Anshuja Anand Meshram

Abstract: Deep Learning Applications are being applied in various domains in recent years. Training a deep learning model is a very time consuming task. But, many open source frameworks are available to simplify this task. In this review paper we have discussed the features of some popular open source software tools available for deep learning along with their advantages and disadvantages. Software tools discussed in this paper are Tensorflow, Keras, Pytorch, Microsoft Cognitive Toolkit (CNTK). Keywords: Deep Learning, Frameworks, Open Source, Tensorflow, Pytorch, Keras, CNTK


2022 ◽  
Vol 3 (4) ◽  
pp. 322-335
Author(s):  
C. R. Nagarathna ◽  
M. Kusuma

Since the past decade, the deep learning techniques are widely used in research. The objective of various applications is achieved using these techniques. The deep learning technique in the medical field helps to find medicines and diagnosis of diseases. The Alzheimer’s is a physical brain disease, on which recently many research are experimented to develop an efficient model that diagnoses the early stages of Alzheimer’s disease. In this paper, a Hybrid model is proposed, which is a combination of VGG19 with additional layers, and a CNN deep learning model for detecting and classifying the different stages of Alzheimer’s and the performance is compared with the CNN model. The Magnetic Resonance Images are used to analyse both models received from the Kaggle dataset. The result shows that the Hybrid model works efficiently in detecting and classifying the different stages of Alzheimer’s.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 669
Author(s):  
Irfan Ullah Khan ◽  
Nida Aslam ◽  
Talha Anwar ◽  
Hind S. Alsaif ◽  
Sara Mhd. Bachar Chrouf ◽  
...  

The coronavirus pandemic (COVID-19) is disrupting the entire world; its rapid global spread threatens to affect millions of people. Accurate and timely diagnosis of COVID-19 is essential to control the spread and alleviate risk. Due to the promising results achieved by integrating machine learning (ML), particularly deep learning (DL), in automating the multiple disease diagnosis process. In the current study, a model based on deep learning was proposed for the automated diagnosis of COVID-19 using chest X-ray images (CXR) and clinical data of the patient. The aim of this study is to investigate the effects of integrating clinical patient data with the CXR for automated COVID-19 diagnosis. The proposed model used data collected from King Fahad University Hospital, Dammam, KSA, which consists of 270 patient records. The experiments were carried out first with clinical data, second with the CXR, and finally with clinical data and CXR. The fusion technique was used to combine the clinical features and features extracted from images. The study found that integrating clinical data with the CXR improves diagnostic accuracy. Using the clinical data and the CXR, the model achieved an accuracy of 0.970, a recall of 0.986, a precision of 0.978, and an F-score of 0.982. Further validation was performed by comparing the performance of the proposed system with the diagnosis of an expert. Additionally, the results have shown that the proposed system can be used as a tool that can help the doctors in COVID-19 diagnosis.


Sign in / Sign up

Export Citation Format

Share Document