scholarly journals Novel genetic male sterility developed in (Capsicum annuum x C. chinense) x C. pubescens and induced by HNO2 showing Mendelian inheritance and aborted at telophase of microspore mother cell stage

2015 ◽  
Vol 14 (2) ◽  
pp. 3318-3329 ◽  
Author(s):  
W. Huang ◽  
J.-J. Ji ◽  
C. Li ◽  
G.-Q. Li ◽  
C.-C. Yin ◽  
...  
1988 ◽  
Vol 66 (10) ◽  
pp. 2013-2021 ◽  
Author(s):  
V. K. Sawhney ◽  
S. K. Bhadula

The development of microspores and the associated changes in the tapetum were examined in the normal (+/+) and male-sterile, stamenless-2 (sl-2/sl-2) mutant anthers of tomato (Lycopersicon esculentum). Anthers of eight comparable stages, from the microspore mother cell stage to anthesis, of both lines were processed for light microscopy. Until the formation of tetrads (stage ii), there were no differences in the sporogenous tissue, but the tapetal cells of the mutant were more enlarged than the normal and had, at places, divided to form a bilayer. Later, the tapetal cells in both lines became amoeboid and had sporopollenin-like deposits. At stage iv, whereas the tapetal cells of the normal had started to degenerate, those of the mutant were intact but had large vacuoles. Also at this stage, the deposition of exine was evident in normal microspores, but it was lacking in most mutant microspores, which enlarged considerably and eventually degenerated. From stage v onwards, the normal microspores progressed from the binucleate pollen to pollen containing many vacuoles to mature pollen. In the mutant, tapetum degeneration was delayed until stage v, and later, although some microspores closer to the tapetum appeared normal, most either were empty or had large vacuoles. It is suggested that the delay in tapetum degeneration coupled with the failure of exine deposition, presumably associated with low esterase activity, is responsible for pollen degeneration in the sl-2/sl-2 mutant.


Euphytica ◽  
2009 ◽  
Vol 173 (1) ◽  
pp. 55-61 ◽  
Author(s):  
Jundae Lee ◽  
Jae Bok Yoon ◽  
Jung-Heon Han ◽  
Won Phil Lee ◽  
Sang Hoon Kim ◽  
...  

Genome ◽  
1997 ◽  
Vol 40 (2) ◽  
pp. 188-194 ◽  
Author(s):  
P. K. Subudhi ◽  
R. P. Borkakati ◽  
S. S. Virmani ◽  
N. Huang

The thermosensitive genetic male sterility (TGMS) system is considered to be a more efficient alternative to the cytoplasmic male sterility (CMS) system for hybrid rice. An F2 population from a cross between a TGMS mutant line (IR32364TGMS) and IR68 was used to map the TGMS gene tms3(t). Fertile and sterile bulks were constructed following the classification of F2 plants into true breeding sterile, fertile, and segregating fertile plants based on F3 family studies. From the survey of 389 arbitrary primers in bulked segregant analysis, four RAPD markers were identified in which three, OPF182600, OPB19750, and OPAA7550, were linked to tms3(t) in repulsion phase and one, OPAC3640, was linked to tms3(t) in coupling phase. The tms3(t) gene was flanked by OPF182600 and OPAC3640 on one side and by OPAA7550 and OPB19750 on the other side. All four markers were low-copy sequences and two of them (OPF182600 and OPAC3640) detected polymorphism when the markers were used to probe the genomic blots. Subsequently, OPAC3640 was mapped to the short arm of chromosome 6 using a mapping population available at IRRI. However, no RFLP markers from this region showed linkage to tms3(t) owing to the lack of polymorphism between the parents. All RAPD fragments were cloned and partially sequenced from both ends. Thus, PCR primers can be designed to develop PCR markers for marker-assisted breeding to facilitate the transfer of tms3(t) from one genetic background to another.Key words: bulked segregant analysis, gene tagging, marker-assisted selection, RAPD, TGMS.


1990 ◽  
Vol 68 (2) ◽  
pp. 243-257 ◽  
Author(s):  
James W. Kimbrough ◽  
Jack L. Gibson

Cytological observations are made on apothecial tissues of Geopyxis carbonaria, using transmission electron microscopy. Characteristic features of both the medullary and ectal excipula are examined. Changes in ascus apex and wall structures are examined during ascus ontogeny, especially in relation to operculum position and structure. Ultrastructure of septum configuration is observed and compared in the excipulum, ascogenous hyphae, paraphyses, and at the base of young asci. Ascosporogenesis is observed from the ascus mother cell stage and initial spore delimitation until secondary wall formation. The cytological and ultrastructural observations on this species are discussed in relation to their possible taxonomic or phylogenetic value. Key words: ascosporogenesis, Discomycetes, ascospore ultrastructure, septal ultrastructure, cytochemistry.


2009 ◽  
pp. 201-208
Author(s):  
M. Nikornpun ◽  
K. Sukwiwat ◽  
C. Chaimokol ◽  
A. Payakhapaab ◽  
D. Boonyakiat

Sign in / Sign up

Export Citation Format

Share Document