Thermal Barrier Coatings for Monolithic Ceramic Low Heat Rejection Diesel Engine Components

Author(s):  
Lloyd Kamo ◽  
Melvin Woods ◽  
Walter Bryzik ◽  
Milad Mekari
Author(s):  
P Ramaswamy ◽  
S Seetharamu ◽  
K B R Verma ◽  
N Raman ◽  
K J Rao

8%Y2O3-stabilized zirconia (8YPSZ) and mullite (3Al2O3·2SiO2) powders, which were made plasma sprayable by using an organic binder (polyvinyl alcohol), have been plasma spray coated on to the piston head, valves and cylinder head of a 3.8kW single-cylinder diesel engine, previously coated with Ni-Cr-Al-Y bond coat. The engine with components coated with 250 μm thick 8YPSZ and 1 mm thick mullite thermal barrier coatings has been evaluated for fuel efficiency and for endurance during 500 h long rigorous tests. Improved fuel efficiency was shown by the engine with coated components and the results are discussed. The coatings and the coated components have also been examined for phases, microstructure and chemical composition by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX). Mullite coatings were found to exhibit increased resistance to microcracking compared with 8YPSZ during the 500 h endurance test.


Author(s):  
Anders Thibblin ◽  
Siamak Kianzad ◽  
Stefan Jonsson ◽  
Ulf Olofsson

Thermal barrier coatings have the potential to improve the fuel efficiency of heavy-duty diesel engines by reducing heat losses. A method for in-situ measurement of heat flux from the combustion chamber of a heavy-duty diesel engine has been developed and was used to study the running-in behaviour of different thermal barrier coating materials and types of microstructures. The in-situ measurements show that the initial heat flux was reduced by up to 4.7% for all investigated thermal barrier coatings compared to a steel reference, except for an yttria-stabilized zirconia coating with sealed pores that had an increase of 12.0% in heat flux. Gd2Zr2O7 had the lowest initial value for heat flux. However, running-in shows the lowest values for yttria-stabilized zirconia after 2–3 h. Potential spallation problems were observed for Gd2Zr2O7 and La2Zr2O7.


Sign in / Sign up

Export Citation Format

Share Document