performance and emission
Recently Published Documents


TOTAL DOCUMENTS

2260
(FIVE YEARS 888)

H-INDEX

71
(FIVE YEARS 20)

2022 ◽  
Vol 2022 ◽  
pp. 1-7
Author(s):  
J. Arunprasad ◽  
Arif Senol Sener ◽  
R. Thirugnanasambantham ◽  
T. Elango ◽  
T. Bothichandar

Nanoparticles are an emerging concept for increasing fuel properties. The purpose of this research work is to determine the effect of magnesium oxide nanoparticles on the performance and emission characteristics of diesel engines that run on a spirulina microalgae biodiesel blend (B20) as a fuel. The ultrasonication was used to disperse MgO nanoparticles in B20 fuel at various concentrations (25, 50, 75, and 100 ppm). The significant findings indicated that B20+100 blends reduced specific fuel consumption by 20.1% and had a 5.09% higher brake thermal efficiency than B20. B20+100 blends reduced CO, hydrocarbon, and smoke emissions by a maximum of 32.02%, 30.03%, and 26.07%, respectively, compared to B20.


Fuels ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 15-30
Author(s):  
Melkamu Genet Leykun ◽  
Menelik Walle Mekonen

Due to the popularity of diesel engines, utilization of fossil fuel has increased. However, fossil fuel resources are depleting and their prices are increasing day by day. Additionally, the emissions from the burning of petroleum-derived fuel is harming the global environment. This work covers the performance and emission parameters of a biogas-diesel dual-fuel mode diesel engine and compared them to baseline diesel. The experiment was conducted on a single-cylinder and four-stroke DI diesel engine with a maximum power output of 2.2 kW by varying engine load at a constant speed of 1500 RPM. The diesel was injected as factory setup, whereas biogas mixes with air and then delivered to the combustion chamber through intake manifold at various flow rates of 2, 4, and 6 L/min. At 2 L/min flow rate of biogas, the results were found to have better performance and lower emission, than that of the other flow; with an average reduction in BTE, HC, and NOx by 11.19, 0.52, and 19.91%, respectively, and an average increment in BSFC, CO, and CO2 by 11.81, 1.05, and 12.8%, respectively, as compared to diesel. The diesel replacement ratio was varied from 19.56 to 7.61% at zero engine load and 80% engine load with biogas energy share of 39.6 and 16.59%, respectively.


2022 ◽  
Author(s):  
Shivakumar Nagareddy ◽  
Kumaresan Govindasamy

Abstract GDI engines commercially existed with spray guided mode where the fuel injector placed almost vertically and sprayed fuel is occupied throughout the volume of combustion chamber. With the advanced emission norms, NOx and Soot emissions control is the major task along with lower fuel consumption. To achieve the advanced emission norms, further modifications are required before or during combustion. Combined air-wall guided mode combustion chamber modification is the advanced stage required for further improvement in mixing and superior combustion. Air-wall combined mode involved piston crown shape modification so that the modified shape should impart turbulence effects and divert the fuel/mixture flow towards the spark plug tip to initiate the combustion process. In this study, the combined air-wall guided mode gasoline direct injection engine was tested with gasoline blends using Ethanol, Methanol and N-Butanol at 20, 35 and 50% proportions under specific fixed conditions: 1500 rpm speed, 10% EGR and FIP of 150 bars with three split injections at 320˚, 220˚ and 100˚ before TDC. Tests were conducted over these gasoline blend proportions for engine performance and emission characteristics and achieved beneficial results with E20 gasoline blend over the entire applied torque values.


Sign in / Sign up

Export Citation Format

Share Document