Aerodynamic Loads on Arbitrary Configurations: Measurements, Computations and Geometric Modeling

2017 ◽  
Author(s):  
Narayanan Komerath ◽  
Nandeesh Hiremath ◽  
Dhwanil Shukla ◽  
Joseph Robinson ◽  
Ayush Jha ◽  
...  
Author(s):  
Denis Voloshinov ◽  
K. Solomonov ◽  
Lyudmila Mokretsova ◽  
Lyudmila Tishchuk

The application of constructive geometric modeling to pedagogical models of teaching graphic disciplines today is a promising direction for using computer technology in the educational process of educational institutions. The essence of the method of constructive geometric modeling is to represent any operation performed on geometric objects in the form of a transformation, as a result of which some constructive connection is established, and the transformation itself can be considered as a result of the action of an abstract cybernetic device. Constructive geometric modeling is a popular information tool for information processing in various applied areas, however, this tool cannot be appreciated without the presence of appropriate software systems and developed design techniques. Traditionally, constructive geometric modeling is used in the design of mechanical engineering, energy, aircraft and shipbuilding facilities, in architectural and design engineering. The need to study descriptive geometry at the university in recent years has something in common with the issues of mastering graphic packages of computer programs in the framework of the new discipline "Engineering and Computer Graphics". The well-known KOMPAS software product is considered the simplest and most attractive for training. It should be noted the important role of graphic packages in the teaching of geometric disciplines that require a figurative perception of the material by students. Against the background of a reduction in classroom hours, computer graphics packages are practically the only productive teaching methodology, successfully replacing traditional tools - chalk and blackboard.


Author(s):  
Yu.Yu. Byalovskiy ◽  
I.S. Rakitina

Cortical mechanisms play an important role in breathing control under increased breathing resistance (resistive loads). Cortical mechanisms determine the level of voluntary motivation, which significantly affects the tolerance of resistive breathing loads. The purpose of the paper is to determine the effect of voluntary motivation on the tolerance of additional breathing resistance. Materials and Methods. The authors formed procedural motivation by means of moral encouragement or financial rewards of the subjects. Simulation of increased breathing resistance was performed using in-creasing values of thresholdless inspiratory aerodynamic loads: 40, 60, 70, and 80 % from the maximum intraoral pressure. Results. The maximum level of tolerance of additional breathing resistance was observed in volunteers with a material and subsidiary procedural motivation of activity. Under respiratory loads, these subjects demonstrated the greatest deviations of the functional state indicators. Undefined motivation based on the mobilization of goal-oriented resources with moral stimulation showed less efficiency. Lack of specially formed procedural motivation led to minimal tolerance of resistive loads. Conclusion. Procedural motivation, aimed at overcoming additional breathing resistance, significantly increases the tolerance of individual protective means of respiratory organs, which maintains health of workers in a polluted technological environment. Keywords: motivation, tolerance, increased breathing resistance. Большую роль в регуляции дыхания при увеличенном сопротивлении дыханию (резистивных нагрузках) играют кортикальные механизмы. Корковые механизмы определяют уровень произвольной мотивации, которая существенно влияет на переносимость резистивных дыхательных нагрузок. Цель исследования – определение влияния произвольной мотивации на переносимость дополнительного респираторного сопротивления. Материалы и методы. Процессуальную мотивацию формировали методом морального или материального поощрения испытуемых. Моделирование увеличенного сопротивления дыханию проводили с помощью предъявления возрастающих значений беспороговых инспираторных аэродинамических нагрузок: 40, 60, 70 и 80 % от максимального внутриротового давления. Результаты. Максимальный уровень переносимости дополнительного респираторного сопротивления наблюдался у добровольцев, у которых была сформирована материально-субсидивная процессуальная мотивация деятельности; у этой категории испытуемых во время действия дыхательных нагрузок отмечались наибольшие отклонения показателей функционального состояния. Произвольная мотивация на основе мобилизации волевых ресурсов при моральном стимулировании характеризовалась меньшей эффективностью, а отсутствие специально сформированной процессуальной мотивации сопровождалось минимальной переносимостью резистивных нагрузок. Выводы. Процессуальная мотивация, сформированная для преодоления дополнительного респираторного сопротивления, существенно повышает переносимость средств индивидуальной защиты органов дыхания, что имеет большое значение для сохранения здоровья работающих в условиях загрязненной производственной среды. Ключевые слова: мотивация, переносимость, увеличенное сопротивление дыханию.


2021 ◽  
Vol 1791 (1) ◽  
pp. 012050
Author(s):  
E V Konopatskiy ◽  
A A Bezditnyi ◽  
A I Litvinov
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document