A Study on Disc Brake Squeal Using Finite Element Methods

1998 ◽  
Author(s):  
Guan Dihua ◽  
Jiang Dongying
2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Lijun Zhang ◽  
Yongchao Dong ◽  
Dejian Meng ◽  
Wenbo Li

In recent years, the problem of automotive brake squeal during steering braking has attracted attention. Under the conditions of squealing, the loading of sprung mass is transferred, and lateral force is generated on the tire, resulting in stress and deformation of the suspension system. To predict the steering brake squeal propensity and explore its mechanism, we established a hybrid model of multibody dynamics and finite element methods to transfer the displacement values of each suspension connection point between two models. We successfully predicted the occurrence of steering brake squeal using the complex eigenvalue analysis method. Thereafter, we analyzed the interface pressure distribution between the pads and disc, and the results showed that the distribution grew uneven with an increase in the steering wheel angle. In addition, changes in the contact and restraint conditions between the pads and disc are the key mechanisms for steering brake squeal.


Author(s):  
Juraj Úradníček ◽  
Miloš Musil ◽  
Ľuboš Gašparovič ◽  
Michal Bachratý

The connection of two phenomena - non-conservative friction forces and dissipation-induced instability can lead to many interesting engineering problems. The paper studies general material-dependent damping influence on dynamical instability of disc brake systems leading to brake squeal. The effect of general damping is demonstrated on a minimal and complex model of a disc brake. A complex system including material-dependent damping is defined in the commercial finite element software. The finite element model validated by experimental data on the brake-disc test bench is used to compute the influence of a pad and a disc damping variations on system stability by complex eigenvalue analysis. Analyzes show a significant sensitivity of the experimentally verified unstable mode of the system to the ratio of the damping between the disc and the friction material components.


2003 ◽  
Author(s):  
Li Lee ◽  
Gang Lou ◽  
Keqin Xu ◽  
Mikio Matsuzaki ◽  
Brad Malott

2013 ◽  
Vol 41 (2) ◽  
pp. 127-151
Author(s):  
Rudolf F. Bauer

ABSTRACT The benefits of a tire's equilibrium profile have been suggested by several authors in the published literature, and mathematical procedures were developed that represented well the behavior of bias ply tires. However, for modern belted radial ply tires, and particularly those with a lower aspect ratio, the tire constructions are much more complicated and pose new problems for a mathematical analysis. Solutions to these problems are presented in this paper, and for a modern radial touring tire the equilibrium profile was calculated together with the mold profile to produce such tires. Some construction modifications were then applied to these tires to render their profiles “nonequilibrium.” Finite element methods were used to analyze for stress concentrations and deformations within all tires that did or did not conform to equilibrium profiles. Finally, tires were built and tested to verify the predictions of these analyses. From the analysis of internal stresses and deformations on inflation and loading and from the actual tire tests, the superior durability of tires with an equilibrium profile was established, and hence it is concluded that an equilibrium profile is a beneficial property of modern belted radial ply tires.


1983 ◽  
Author(s):  
W. HABASHI ◽  
M. HAFEZ ◽  
P. KOTIUGA

Sign in / Sign up

Export Citation Format

Share Document