scholarly journals Torsion points, Pell’s equation, and integration in elementary terms

2020 ◽  
Vol 225 (2) ◽  
pp. 227-312
Author(s):  
David Masser ◽  
Umberto Zannier
2020 ◽  
Vol 25 (2) ◽  
pp. 125-132
Author(s):  
Bal Bahadur Tamang ◽  
Ajay Singh

This article attempts to describe the continued fraction expansion of ÖD viewed as a Laurent series x-1. As the behavior of the continued fraction expansion of ÖD is related to the solvability of the polynomial Pell’s equation p2-Dq2=1  where D=f2+2g  is monic quadratic polynomial with deg g<deg f  and the solutions p, q  must be integer polynomials. It gives a non-trivial solution if and only if the continued fraction expansion of ÖD  is periodic.


Cryptography ◽  
2020 ◽  
Vol 4 (3) ◽  
pp. 20 ◽  
Author(s):  
Donghoe Heo ◽  
Suhri Kim ◽  
Kisoon Yoon ◽  
Young-Ho Park ◽  
Seokhie Hong

The implementation of isogeny-based cryptography mainly use Montgomery curves, as they offer fast elliptic curve arithmetic and isogeny computation. However, although Montgomery curves have efficient 3- and 4-isogeny formula, it becomes inefficient when recovering the coefficient of the image curve for large degree isogenies. Because the Commutative Supersingular Isogeny Diffie-Hellman (CSIDH) requires odd-degree isogenies up to at least 587, this inefficiency is the main bottleneck of using a Montgomery curve for CSIDH. In this paper, we present a new optimization method for faster CSIDH protocols entirely on Montgomery curves. To this end, we present a new parameter for CSIDH, in which the three rational two-torsion points exist. By using the proposed parameters, the CSIDH moves around the surface. The curve coefficient of the image curve can be recovered by a two-torsion point. We also proved that the CSIDH while using the proposed parameter guarantees a free and transitive group action. Additionally, we present the implementation result using our method. We demonstrated that our method is 6.4% faster than the original CSIDH. Our works show that quite higher performance of CSIDH is achieved while only using Montgomery curves.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Arjan Dwarshuis ◽  
Majken Roelfszema ◽  
Jaap Top

AbstractThis note reformulates Mazur’s result on the possible orders of rational torsion points on elliptic curves over $$\mathbb {Q}$$ Q in a way that makes sense for arbitrary genus one curves, regardless whether or not the curve contains a rational point. The main result is that explicit examples are provided of ‘pointless’ genus one curves over $$\mathbb {Q}$$ Q corresponding to the torsion orders 7, 8, 9, 10, 12 (and hence, all possibilities) occurring in Mazur’s theorem. In fact three distinct methods are proposed for constructing such examples, each involving different in our opinion quite nice ideas from the arithmetic of elliptic curves or from algebraic geometry.


2009 ◽  
Vol 48 (5) ◽  
pp. 387-402 ◽  
Author(s):  
Margarita Otero ◽  
Ya’acov Peterzil

2014 ◽  
Vol 47 (1) ◽  
pp. 127-135 ◽  
Author(s):  
Everett W. Howe
Keyword(s):  

2008 ◽  
Vol 31 (3) ◽  
pp. 385-403
Author(s):  
Masaya Yasuda

2010 ◽  
Vol 79 (269) ◽  
pp. 485-485 ◽  
Author(s):  
Keith Matthews ◽  
John Robertson ◽  
Jim White

Sign in / Sign up

Export Citation Format

Share Document