scholarly journals Hyperbolic volume and Heegaard distance

2014 ◽  
Vol 22 (2) ◽  
pp. 247-268
Author(s):  
Tsuyoshi Kobayashi ◽  
Yo’av Rieck
2021 ◽  
Vol 157 (4) ◽  
pp. 649-676
Author(s):  
Daniil Rudenko

We prove the strong Suslin reciprocity law conjectured by A. Goncharov. The Suslin reciprocity law is a generalization of the Weil reciprocity law to higher Milnor $K$ -theory. The Milnor $K$ -groups can be identified with the top cohomology groups of the polylogarithmic motivic complexes; Goncharov's conjecture predicts the existence of a contracting homotopy underlying Suslin reciprocity. The main ingredient of the proof is a homotopy invariance theorem for the cohomology of the polylogarithmic motivic complexes in the ‘next to Milnor’ degree. We apply these results to the theory of scissors congruences of hyperbolic polytopes. For every triple of rational functions on a compact projective curve over $\mathbb {C}$ we construct a hyperbolic polytope (defined up to scissors congruence). The hyperbolic volume and the Dehn invariant of this polytope can be computed directly from the triple of rational functions on the curve.


10.1142/8453 ◽  
2012 ◽  
Author(s):  
Ilesanmi Adeboye
Keyword(s):  

1993 ◽  
Vol 117 (3) ◽  
pp. 727 ◽  
Author(s):  
F. W. Gehring ◽  
G. J. Martin
Keyword(s):  

1993 ◽  
Vol 68 (1) ◽  
pp. 494-509 ◽  
Author(s):  
Marc Culler ◽  
Peter B. Shalen
Keyword(s):  

Author(s):  
Hyungryul Baik ◽  
Inhyeok Choi ◽  
Dongryul M Kim

Abstract In this paper, we develop a way to extract information about a random walk associated with a typical Thurston’s construction. We first observe that a typical Thurston’s construction entails a free group of rank 2. We also present a proof of the spectral theorem for random walks associated with Thurston’s construction that have finite 2nd moment with respect to the Teichmüller metric. Its general case was remarked by Dahmani and Horbez. Finally, under a hypothesis not involving moment conditions, we prove that random walks eventually become pseudo-Anosov. As an application, we first discuss a random analogy of Kojima and McShane’s estimation of the hyperbolic volume of a mapping torus with pseudo-Anosov monodromy. As another application, we discuss non-probabilistic estimations of stretch factors from Thurston’s construction and the powers for Salem numbers to become the stretch factors of pseudo-Anosovs from Thurston’s construction.


2007 ◽  
Vol 232 (2) ◽  
pp. 423-451 ◽  
Author(s):  
Alexander Stoimenow
Keyword(s):  

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Aditya Dwivedi ◽  
Siddharth Dwivedi ◽  
Bhabani Prasad Mandal ◽  
Pichai Ramadevi ◽  
Vivek Kumar Singh

AbstractThe entanglement entropy of many quantum systems is difficult to compute in general. They are obtained as a limiting case of the Rényi entropy of index m, which captures the higher moments of the reduced density matrix. In this work, we study pure bipartite states associated with S3 complements of a two-component link which is a connected sum of a knot $$ \mathcal{K} $$ K and the Hopf link. For this class of links, the Chern-Simons theory provides the necessary setting to visualise the m-moment of the reduced density matrix as a three-manifold invariant Z($$ {M}_{{\mathcal{K}}_m} $$ M K m ), which is the partition function of $$ {M}_{{\mathcal{K}}_m} $$ M K m . Here $$ {M}_{{\mathcal{K}}_m} $$ M K m is a closed 3-manifold associated with the knot $$ \mathcal{K} $$ K m, where $$ \mathcal{K} $$ K m is a connected sum of m-copies of $$ \mathcal{K} $$ K (i.e., $$ \mathcal{K} $$ K #$$ \mathcal{K} $$ K . . . #$$ \mathcal{K} $$ K ) which mimics the well-known replica method. We analayse the partition functions Z($$ {M}_{{\mathcal{K}}_m} $$ M K m ) for SU(2) and SO(3) gauge groups, in the limit of the large Chern-Simons coupling k. For SU(2) group, we show that Z($$ {M}_{{\mathcal{K}}_m} $$ M K m ) can grow at most polynomially in k. On the contrary, we conjecture that Z($$ {M}_{{\mathcal{K}}_m} $$ M K m ) for SO(3) group shows an exponential growth in k, where the leading term of ln Z($$ {M}_{{\mathcal{K}}_m} $$ M K m ) is the hyperbolic volume of the knot complement S3\$$ \mathcal{K} $$ K m. We further propose that the Rényi entropies associated with SO(3) group converge to a finite value in the large k limit. We present some examples to validate our conjecture and proposal.


Sign in / Sign up

Export Citation Format

Share Document