scholarly journals On the modified mod $p$ local Langlands correspondence for $GL_2(\mathbb{Q}_{\ell})$

2013 ◽  
Vol 20 (3) ◽  
pp. 489-500 ◽  
Author(s):  
David Helm
2015 ◽  
Vol 151 (8) ◽  
pp. 1433-1461
Author(s):  
Przemysław Chojecki

We analyse the$\text{mod}~p$étale cohomology of the Lubin–Tate tower both with compact support and without support. We prove that there are no supersingular representations in the$H_{c}^{1}$of the Lubin–Tate tower. On the other hand, we show that in$H^{1}$of the Lubin–Tate tower appears the$\text{mod}~p$local Langlands correspondence and the$\text{mod}~p$local Jacquet–Langlands correspondence, which we define in the text. We discuss the local-global compatibility part of the Buzzard–Diamond–Jarvis conjecture which appears naturally in this context.


2017 ◽  
Vol 69 (1) ◽  
pp. 107-129
Author(s):  
Masoud Kamgarpour

AbstractUnder the local Langlands correspondence, the conductor of an irreducible representation of Gln(F) is greater than the Swan conductor of the corresponding Galois representation. In this paper, we establish the geometric analogue of this statement by showing that the conductor of a categorical representation of the loop group is greater than the irregularity of the corresponding meromorphic connection.


2018 ◽  
Vol 154 (7) ◽  
pp. 1473-1507
Author(s):  
Thomas Lanard

Let $G$ be a $p$-adic group that splits over an unramified extension. We decompose $\text{Rep}_{\unicode[STIX]{x1D6EC}}^{0}(G)$, the abelian category of smooth level $0$ representations of $G$ with coefficients in $\unicode[STIX]{x1D6EC}=\overline{\mathbb{Q}}_{\ell }$ or $\overline{\mathbb{Z}}_{\ell }$, into a product of subcategories indexed by inertial Langlands parameters. We construct these categories via systems of idempotents on the Bruhat–Tits building and Deligne–Lusztig theory. Then, we prove compatibilities with parabolic induction and restriction functors and the local Langlands correspondence.


2019 ◽  
Vol 155 (10) ◽  
pp. 1959-2038
Author(s):  
Colin J. Bushnell ◽  
Guy Henniart

Let $F$ be a non-Archimedean locally compact field of residual characteristic $p$ with Weil group ${\mathcal{W}}_{F}$. Let $\unicode[STIX]{x1D70E}$ be an irreducible smooth complex representation of ${\mathcal{W}}_{F}$, realized as the Langlands parameter of an irreducible cuspidal representation $\unicode[STIX]{x1D70B}$ of a general linear group over $F$. In an earlier paper we showed that the ramification structure of $\unicode[STIX]{x1D70E}$ is determined by the fine structure of the endo-class $\unicode[STIX]{x1D6E9}$ of the simple character contained in $\unicode[STIX]{x1D70B}$, in the sense of Bushnell and Kutzko. The connection is made via the Herbrand function $\unicode[STIX]{x1D6F9}_{\unicode[STIX]{x1D6E9}}$ of $\unicode[STIX]{x1D6E9}$. In this paper we concentrate on the fundamental Carayol case in which $\unicode[STIX]{x1D70E}$ is totally wildly ramified with Swan exponent not divisible by $p$. We show that, for such $\unicode[STIX]{x1D70E}$, the associated Herbrand function satisfies a certain functional equation, and that this property essentially characterizes this class of representations. We calculate $\unicode[STIX]{x1D6F9}_{\unicode[STIX]{x1D6E9}}$ explicitly, in terms of a classical Herbrand function arising naturally from the classification of simple characters. We describe exactly the class of functions arising as Herbrand functions $\unicode[STIX]{x1D6F9}_{\unicode[STIX]{x1D6EF}}$, as $\unicode[STIX]{x1D6EF}$ varies over the set of totally wild endo-classes of Carayol type. In a separate argument, we derive a complete description of the restriction of $\unicode[STIX]{x1D70E}$ to any ramification subgroup and hence a detailed interpretation of the Herbrand function. This gives concrete information concerning the Langlands correspondence.


Sign in / Sign up

Export Citation Format

Share Document