Foot forces and joint moments/muscle activity

1999 ◽  
pp. 383-396
Author(s):  
P. Wretenberg ◽  
Y. Feng ◽  
F. Lindberg ◽  
U. p. Arboreilus

2021 ◽  
Vol 2 ◽  
Author(s):  
Stian Larsen ◽  
Olav Gomo ◽  
Roland van den Tillaar

Grip width has been found to affect lifting performance, especially around the sticking region; however, little is known about the kinetics and muscle activities that could explain these differences in performance. This study aimed to investigate the effects of grip width on the joint, barbell kinematics, and horizontal kinetics, analyzed in tandem with the effects of muscle activation around the sticking region in the one repetition maximum (1-RM) barbell bench press. Fourteen healthy bench press-trained males (body mass: 87.8 ± 18.4, age: 25 ± 5.4) performed 1-RM with a small, medium, and wide grip width. The participants bench pressed 109.8 ± 24.5 kg, 108.9 ± 26.4 kg, and 103.7 ± 24 kg with the wide, medium, and narrow grip widths. Furthermore, the wide grip width produced 13.1–15.7% lateral forces, while the medium and narrow grip widths produced 0.4–1.8 and 8.5–10.1% medially directed forces of the vertical force produced during the sticking region, respectively. Horizontal forces did not increase during the sticking region, and the resultant forces decreased during the sticking region for all grip widths. The wide and medium grip widths produced greater horizontal shoulder moments than the narrow grip width during the sticking region. Hence, the wide and medium grip widths produced similar shoulder and elbow joint moments and moment arm at the first located lowest barbell velocity. Furthermore, triceps medialis muscle activity was greater for the medium and narrow grip widths than the wide grip width. This study suggests that the sticking region for the wide and medium grip widths may be specific to the horizontal elbow and shoulder joint moments created during this region. Therefore, when the goal is to lift as much as possible during 1-RM bench press attempts among recreationally trained males, our findings suggest that bench pressing with a wide or medium grip width may be beneficial.


1993 ◽  
Vol 26 (9) ◽  
pp. 1067-1076 ◽  
Author(s):  
M.P. de Looze ◽  
H.M. Toussaint ◽  
J.H. van Dieën ◽  
H.C.G. Kemper

2020 ◽  
Vol 44 (3) ◽  
pp. 107-116 ◽  
Author(s):  
Erin Hartigan ◽  
J. Adrienne McAuley ◽  
Michael Lawrence ◽  
Willis Brucker ◽  
Adam King ◽  
...  

2008 ◽  
Vol 104 (3) ◽  
pp. 747-755 ◽  
Author(s):  
Song Joo Lee ◽  
Joseph Hidler

The goal of this study was to compare treadmill walking with overground walking in healthy subjects with no known gait disorders. Nineteen subjects were tested, where each subject walked on a split-belt instrumented treadmill as well as over a smooth, flat surface. Comparisons between walking conditions were made for temporal gait parameters such as step length and cadence, leg kinematics, joint moments and powers, and muscle activity. Overall, very few differences were found in temporal gait parameters or leg kinematics between treadmill and overground walking. Conversely, sagittal plane joint moments were found to be quite different, where during treadmill walking trials, subjects demonstrated less dorsiflexor moments, less knee extensor moments, and greater hip extensor moments. Joint powers in the sagittal plane were found to be similar at the ankle but quite different at the knee and hip joints. Differences in muscle activity were observed between the two walking modalities, particularly in the tibialis anterior throughout stance, and in the hamstrings, vastus medialis and adductor longus during swing. While differences were observed in muscle activation patterns, joint moments and joint powers between the two walking modalities, the overall patterns in these behaviors were quite similar. From a therapeutic perspective, this suggests that training individuals with neurological injuries on a treadmill appears to be justified.


Motor Control ◽  
2000 ◽  
Vol 4 (1) ◽  
pp. 53-59 ◽  
Author(s):  
Graham E. Caldwell ◽  
Li Li

2002 ◽  
Vol 16 (2) ◽  
pp. 92-96
Author(s):  
Tiina Ritvanen ◽  
Reijo Koskelo ◽  
Osmo H„nninen

Abstract This study follows muscle activity in three different learning sessions (computer, language laboratory, and normal classroom) while students were studying foreign languages. Myoelectric activity was measured in 21 high school students (10 girls, 11 boys, age range 17-20 years) by surface electromyography (sEMG) from the upper trapezius and frontalis muscles during three 45-min sessions. Root mean square (RMS) average from both investigated muscles was calculated. The EMG activity was highest in both muscle groups in the computer-aided session and lowest in the language laboratory. The girls had higher EMG activity in both investigated muscle groups in all three learning situations. The measured blood pressure was highest at the beginning of the sessions, decreased within 10 min, but increased again toward the end of the sessions. Our results indicate that the use of a computer as a teaching-aid evokes more constant muscle activity than the traditional learning situations. Since muscle tension can have adverse health consequences, more research is needed to determine optimal classroom conditions, especially when technical aids are used in teaching.


2012 ◽  
Author(s):  
Ehsan Rashedi ◽  
Bochen Jia ◽  
Maury A. Nussbaum ◽  
Thurmon E. Lockhart

Sign in / Sign up

Export Citation Format

Share Document