biomechanical analysis
Recently Published Documents


TOTAL DOCUMENTS

3030
(FIVE YEARS 715)

H-INDEX

80
(FIVE YEARS 6)

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Jichao Liu ◽  
Zhengwei Li ◽  
Jie Ding ◽  
Bingzhe Huang ◽  
Chengdong Piao

Abstract Background Femoral neck fractures in young people are usually Pauwels Type III fractures. The common treatment method are multiple parallel cannulated screws or dynamic hip screw sliding compression fixation. Due to the huge shear stress, the rate of complications such as femoral head necrosis and nonunion is still high after treatment. The aim of our study was to compare the stabilities of two fixation methods in fixating pauwels type III femoral neck fractures. Methods All biomimetic fracture samples are fixed with three cannulated screws combined with a medial buttress plate. There were two fixation groups for the buttress plate and proximal fracture fragment: Group A, long screw (40 mm); Group B, short screw (6 mm). Samples were subjected to electrical strain measurement under a load of 500 N, axial stiffness was measured, and then the samples were axially loaded until failure. More than 5 mm of displacement or synthetic bone fracture was considered as construct failure. Results There were no significant differences in failure load (P = 0.669), stiffness (P = 0.842), or strain distribution (P > 0.05) between the two groups. Conclusions Unicortical short screws can provide the same stability as long screws for Pauwels Type III Femoral Neck Fractures.


2022 ◽  
Vol 8 ◽  
Author(s):  
Jan C. L. Lau ◽  
Katja Mombaur

Lower-limb exoskeletons have been created for different healthcare needs, but no research has been done on developing a proper protocol for users to get accustomed to moving with one. The user manuals provided also do not include such instructions. A pre-test was conducted with the TWIN (IIT), which is a lower-limb exoskeleton made for persons with spinal cord injury. In the pre-test, two healthy, able-bodied graduate students indicated a need for a protocol that can better prepare able-bodied, first-time users to move with an exoskeleton. TWIN was used in this preliminary study and nine users were divided to receive a tutorial or no tutorial before walking with the exoskeleton. Due to COVID-19 regulations, the study could only be performed with healthy, young-to-middle-aged lab members that do not require walking support. The proposed protocol was evaluated with the System Usability Scale, NASA Raw Task Load Index, and two custom surveys. The members who received the tutorial found it easy to follow and helpful, but the tutorial seemed to come at a price of higher perceived mental and physical demands, which could stem from the longer testing duration and the need to constantly recall and apply the things learned from the tutorial. All results presented are preliminary, and it is recommended to include biomechanical analysis and conduct the experiment with more participants in the future. Nonetheless, this proof-of-concept study lays groundwork for future related studies and the protocol will be adjusted, applied, and validated to patients and geriatric users.


2022 ◽  
Vol 12 (2) ◽  
pp. 614
Author(s):  
Frydrýšek Karel ◽  
Čepica Daniel ◽  
Halo Tomáš ◽  
Skoupý Ondřej ◽  
Pleva Leopold ◽  
...  

Limb asymmetry can, and often does, cause various health problems. Blount bone staples (clips) are used to correct such uneven growth. This article analyzes the performance of a biomechanical staple during bone (tibia) growth arrest. The staples considered in this study were made of 1.4441 stainless steel, the model of tibia consisted of two materials representing corticalis and spongiosis. Hooke’s law was used for modeling materials’ behaviors for finite element analysis (FEA). The maxima of stress and total staple displacement were evaluated using the finite element method and verification of the results, along with the determination of the maximum loading (growing) force that the staples are capable of withstanding, was performed experimentally. The presented method can be used to determine the safety and usability of staples for bone growth arrest. According to our results, the design of Blount staples considered in this paper is safe and suitable for orthopedic treatment.


Author(s):  
Leo Licari ◽  
Simona Viola ◽  
Giuseppe Salamone

AbstractVentral hernia (VH) frequently affects patients after abdominal surgery. The use of a mesh is often recommended. Different materials are described, from synthetic non-resorbable meshes to biological meshes. New generation meshes, also named scaffolds, aim to combine the advantages of both materials. The aim of this review is to provide an overview of the cytological, histological, biomechanical, and clinical outcomes of the use of the newest resorbable synthetic scaffolds in VH repair, based on experimental studies in a pre-clinical setting. A systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and to the Assessing the Methodological Quality of Systematic Reviews (AMSTAR) guidelines. Only experimental studies were included. Outcome parameters were building technique, in vitro cytocompatibility, in vivo histocompatibility, biomechanical analysis, and clinical outcomes. The articles included were nine. The total number of cases treated was 257. Materials analyzed included electrospun silk fibroin (SF)/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) hybrid scaffolds, biodegradable polyester poly-ε-caprolactone (PCL) in the form of nanofibers, biodegradable mesh in poly-4-hydroxybutyrate (P4HB), nanofibrous polylactic acid (PLA) scaffold with a polypropylene (PP) material to generate a sandwich-like mesh, the collagen sponge (CS) group, the hybrid scaffold (HS) containing CS and poly-L-lactide (PLLA), and the hybrid scaffold (HS) + bone marrow (HSBM). Resorbable synthetic scaffolds are new, safe, surgical materials for the treatment or prevention of ventral hernia in animal models. Scaffolds should be tested in a contaminated surgical field for emergency use. Rigorous schematic indications for data collection are needed to improve the quality of the data in order to definitively clarify the pathway involved in inflammatory induced response.


2022 ◽  
Vol 8 ◽  
Author(s):  
Elsa J. Harris ◽  
I-Hung Khoo ◽  
Emel Demircan

We performed an electronic database search of published works from 2012 to mid-2021 that focus on human gait studies and apply machine learning techniques. We identified six key applications of machine learning using gait data: 1) Gait analysis where analyzing techniques and certain biomechanical analysis factors are improved by utilizing artificial intelligence algorithms, 2) Health and Wellness, with applications in gait monitoring for abnormal gait detection, recognition of human activities, fall detection and sports performance, 3) Human Pose Tracking using one-person or multi-person tracking and localization systems such as OpenPose, Simultaneous Localization and Mapping (SLAM), etc., 4) Gait-based biometrics with applications in person identification, authentication, and re-identification as well as gender and age recognition 5) “Smart gait” applications ranging from smart socks, shoes, and other wearables to smart homes and smart retail stores that incorporate continuous monitoring and control systems and 6) Animation that reconstructs human motion utilizing gait data, simulation and machine learning techniques. Our goal is to provide a single broad-based survey of the applications of machine learning technology in gait analysis and identify future areas of potential study and growth. We discuss the machine learning techniques that have been used with a focus on the tasks they perform, the problems they attempt to solve, and the trade-offs they navigate.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Xinlin Gao ◽  
Yang Meng ◽  
Dingjun Hao ◽  
Hao Liu

Abstract Background Parathyroid hormone, with its anabolic effect on bone formation, has shown excellent outcomes of curing postmenopausal osteoporosis as well as enhancing osseointegration around orthopaedic and stomatologic implants.The purpose of the present study is to test if low-dose intermittent PTH (1–34) treatment could achieve a satisfactory osseointegration in 2-mm peri-implant gaps, as to provide a new idea for improving the stability of such prosthesis, which will be of great clinical value. Methods A custom-made titanium implant was implanted on the calvarium of New Zealand White rabbits. 48 male rabbits were randomly divided into control and PTH group. PTH group received subcutaneous injection of PTH (20 μg/day, 5 days/week). Animals were sacrificed at 4 and 8 weeks after surgery. Quantitative micro-computed tomography, histology and biomechanical pull-out testing were performed to evaluate the gap healing at implantation site. Results Analysis of micro-computed tomography demonstrated that PTH group achieved more new bone formation in 2-mm gaps and on bone-implant interface. Quantitatively, significant differences were observed between two groups in regard to BIC and BV/TV at each time-point. Histological staining revealed that PTH group had a superiority in trabecular number, thickness, separation and better osseointegration compared to control group. As for biomechanical pull-out testing, PTH group also showed significant improvement of ultimate force than control group. Conclusions Low-dose intermittent administration of PTH for 4 and 8 weeks enhances early osseointegration and fixation of orthopedic implants surrounded by a 2-mm gap in terms of increased bone regeneration and mechanical stability. These findings suggest PTH a potential for reducing the postoperative complications of implants by improving bone healing at peri-implant gaps.


2022 ◽  
Vol 2153 (1) ◽  
pp. 012019
Author(s):  
V K Hernández Vergel ◽  
R Prada Núñez ◽  
C A Hernández Suárez

Abstract This research is based on biomechanics as a science that involves concepts of engineering, mechanics, physic, anatomy, physiology, and many others, to study the human body with the desire to solve certain problems that may affect the performance of an individual in their work or personal level. This work is an investigative process in these areas of scientific and applied disciplines, in which the attention is focused on the hand as a valuable tool for the occupational performance of the human being, since through it is possible to touch, move, grasp, or manipulate objects. Injuries to this limb may be due to various causes, which require complex surgeries and long periods of rehabilitation to be reversed. This research highlights the importance of certain physical concepts that must be understood by the rehabilitation expert in order not to affect the surgery and thus guarantee the maximum functionality of the patient at the end of the recovery cycle.


2021 ◽  
Vol 7 (4) ◽  
pp. 19-34
Author(s):  
V.Yu. Kozin ◽  
O.Ye. Falova ◽  
M. Cretu ◽  
M. Cieślicka

Purpose: to reveal the styles of fighting veteran boxers on the basis of a multivariate analysis of psychophysiological and biomechanical indicators. Material and methods. The study involved 42 qualified veteran boxers (age 45-50 years). As research methods, we used a biomechanical analysis of the indicators of the speed of movement of various points and the values ​​of the angles in the joints when performing a direct blow by boxers. The psychophysiological method was used to determine the time of a simple and complex reaction under standard conditions and in various testing modes. We used the method of cluster analysis to distribute athletes into groups using the SPSS - 17.0 program. Within the groups, the athletes are as similar as possible to each other in terms of the analyzed indicators, and between the groups they differ as much as possible. The analysis of the groups of athletes obtained with the help of cluster analysis made it possible to identify athletes with the following styles of fighting: tempo, game, power. Results. Cluster analysis of psychophysiological and biomehanical testing showed the presence of 3 groups of athletes. The clusters were named as follows: Cluster 1 - "Speed and coordination endurance", corresponds to the boxers of the pace of the fight; Cluster 2 - "Speed", corresponds to the boxers of the game style of fighting; Cluster 3 - "Strength and speed", corresponds to the boxers of the pace of the fight. Biomechanical features of boxers of different styles of fighting are reflected in the trajectories of the points of the fist, elbow, knee. Conclusions. The results of this study should be used when planning the individual training of athletes in boxing and to determine the optimal style of competitive competition for qualified veteran boxers. The proposed methods of psychophysiological and biomechanical testing to determine the individual characteristics of boxers are an effective, fairly accessible and convenient tool for revealing the predisposition of boxers to a certain style of fighting.


Sign in / Sign up

Export Citation Format

Share Document