scholarly journals On the 1-2-3-conjecture

2015 ◽  
Vol Vol. 17 no. 1 (Graph Theory) ◽  
Author(s):  
Akbar Davoodi ◽  
Behnaz Omoomi

Graph Theory International audience A k-edge-weighting of a graph G is a function w:E(G)→{1,…,k}. An edge-weighting naturally induces a vertex coloring c, where for every vertex v∈V(G), c(v)=∑e∼vw(e). If the induced coloring c is a proper vertex coloring, then w is called a vertex-coloring k-edge-weighting (VC k-EW). Karoński et al. (J. Combin. Theory Ser. B, 91 (2004) 151 13;157) conjectured that every graph admits a VC 3-EW. This conjecture is known as the 1-2-3-conjecture. In this paper, first, we study the vertex-coloring edge-weighting of the Cartesian product of graphs. We prove that if the 1-2-3-conjecture holds for two graphs G and H, then it also holds for G□H. Also we prove that the Cartesian product of connected bipartite graphs admits a VC 2-EW. Moreover, we present several sufficient conditions for a graph to admit a VC 2-EW. Finally, we explore some bipartite graphs which do not admit a VC 2-EW.

Author(s):  
Peruri Lakshmi Narayana Varma , Et. al.

Circular distance between vertices of a graph has a significant role, which is defined as summation of detour distance and geodesic distance. Attention is paid, this is metric on the set of all vertices of graph  and it plays an important role in graph theory. Some bounds have been carried out for circular distance in terms of pendent vertices of graph  . Some results and properties have been found for circular distance for some classes of graphs and applied this distance to Cartesian product of graphs〖  P〗_2×C_n.  Including 〖 P〗_2×C_n, some graphs acted as a circular self-centered. Using this circular distance there exists some relations between various radii and diameters in path graphs. The possible applications were briefly discussed. 


2013 ◽  
Vol Vol. 15 no. 1 (Graph Theory) ◽  
Author(s):  
Anja Kohl

Graph Theory International audience A b-coloring of a graph G by k colors is a proper vertex coloring such that each color class contains a color-dominating vertex, that is, a vertex having neighbors in all other k-1 color classes. The b-chromatic number χb(G) is the maximum integer k for which G has a b-coloring by k colors. Let Cnr be the rth power of a cycle of order n. In 2003, Effantin and Kheddouci established the b-chromatic number χb(Cnr) for all values of n and r, except for 2r+3≤n≤3r. For the missing cases they presented the lower bound L:= min n-r-1,r+1+⌊ n-r-1 / 3⌋ and conjectured that χb(Cnr)=L. In this paper, we determine the exact value on χb(Cnr) for the missing cases. It turns out that χb(Cnr)>L for 2r+3≤n≤2r+3+r-6 / 4.


Author(s):  
Paweł Bednarz ◽  
Iwona Włoch

In this paper we study the problem of the existence of (2-d)-kernels in the cartesian product of graphs. We give sufficient conditions for the existence of (2-d)-kernels in the cartesian product and also we consider the number of (2-d)-kernels.


2021 ◽  
Vol 7 (2) ◽  
pp. 2634-2645
Author(s):  
Ganesh Gandal ◽  
◽  
R Mary Jeya Jothi ◽  
Narayan Phadatare ◽  

<abstract><p>Let $ G_1 \square G_2 $ be the Cartesian product of simple, connected and finite graphs $ G_1 $ and $ G_2 $. We give necessary and sufficient conditions for the Cartesian product of graphs to be very strongly perfect. Further, we introduce and characterize the co-strongly perfect graph. The very strongly perfect graph is implemented in the real-time application of a wireless sensor network to optimize the set of master nodes to communicate and control nodes placed in the field.</p></abstract>


2016 ◽  
Vol Vol. 17 no. 3 (Graph Theory) ◽  
Author(s):  
Hongliang Lu

International audience Let $G$ be a graph and $\mathcal{S}$ be a subset of $Z$. A vertex-coloring $\mathcal{S}$-edge-weighting of $G$ is an assignment of weights by the elements of $\mathcal{S}$ to each edge of $G$ so that adjacent vertices have different sums of incident edges weights. It was proved that every 3-connected bipartite graph admits a vertex-coloring $\mathcal{S}$-edge-weighting for $\mathcal{S} = \{1,2 \}$ (H. Lu, Q. Yu and C. Zhang, Vertex-coloring 2-edge-weighting of graphs, European J. Combin., 32 (2011), 22-27). In this paper, we show that every 2-connected and 3-edge-connected bipartite graph admits a vertex-coloring $\mathcal{S}$-edge-weighting for $\mathcal{S} \in \{ \{ 0,1 \} , \{1,2 \} \}$. These bounds we obtain are tight, since there exists a family of infinite bipartite graphs which are 2-connected and do not admit vertex-coloring $\mathcal{S}$-edge-weightings for $\mathcal{S} \in \{ \{ 0,1 \} , \{1,2 \} \}$.


2011 ◽  
Vol Vol. 13 no. 3 (Graph and Algorithms) ◽  
Author(s):  
Min Chen ◽  
André Raspaud ◽  
Weifan Wang

Graphs and Algorithms International audience A proper vertex coloring of a graphGis called a star-coloring if there is no path on four vertices assigned to two colors. The graph G is L-star-colorable if for a given list assignment L there is a star-coloring c such that c(v) epsilon L(v). If G is L-star-colorable for any list assignment L with vertical bar L(v)vertical bar \textgreater= k for all v epsilon V(G), then G is called k-star-choosable. The star list chromatic number of G, denoted by X-s(l)(G), is the smallest integer k such that G is k-star-choosable. In this article, we prove that every graph G with maximum average degree less than 3 is 8-star-choosable. This extends a result that planar graphs of girth at least 6 are 8-star-choosable [A. Kundgen, C. Timmons, Star coloring planar graphs from small lists, J. Graph Theory, 63(4): 324-337, 2010].


1992 ◽  
Vol 16 (4) ◽  
pp. 297-303
Author(s):  
Elefterie Olaru ◽  
Eugen M??ndrescu

2014 ◽  
Vol 06 (01) ◽  
pp. 1450001 ◽  
Author(s):  
M. R. CHITHRA ◽  
A. VIJAYAKUMAR

The diameter of a graph can be affected by the addition or deletion of edges. In this paper, we examine the Cartesian product of graphs whose diameter increases (decreases) by the deletion (addition) of a single edge. The problems of minimality and maximality of the Cartesian product of graphs with respect to its diameter are also solved. These problems are motivated by the fact that most of the interconnection networks are graph products and a good network must be hard to disrupt and the transmissions must remain connected even if some vertices or edges fail.


Sign in / Sign up

Export Citation Format

Share Document