On $k$-simplexes in $(2k-1)$-dimensional vector spaces over finite fields
2009 ◽
Vol DMTCS Proceedings vol. AK,...
(Proceedings)
◽
Keyword(s):
International audience We show that if the cardinality of a subset of the $(2k-1)$-dimensional vector space over a finite field with $q$ elements is $\gg q^{2k-1-\frac{1}{ 2k}}$, then it contains a positive proportional of all $k$-simplexes up to congruence. Nous montrons que si la cardinalité d'un sous-ensemble de l'espace vectoriel à $(2k-1)$ dimensions sur un corps fini à $q$ éléments est $\gg q^{2k-1-\frac{1}{ 2k}}$, alors il contient une proportion non-nulle de tous les $k$-simplexes de congruence.
Keyword(s):
Keyword(s):
2019 ◽
Vol 19
(05)
◽
pp. 2050086
◽
Keyword(s):
2019 ◽
Vol 53
(1 (248))
◽
pp. 23-27
2017 ◽
Vol 16
(01)
◽
pp. 1750007
◽
2011 ◽
Vol 85
(1)
◽
pp. 19-25
Keyword(s):
Keyword(s):
1985 ◽
Vol 98
◽
pp. 139-156
◽