scholarly journals $Star^1$-convex functions on tropical linear spaces of complete graphs

2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Laura Escobar

International audience Given a fan $\Delta$ and a cone $\sigma \in \Delta$ let $star^1(\sigma )$ be the set of cones that contain $\sigma$ and are one dimension bigger than $\sigma$ . In this paper we study two cones of piecewise linear functions defined on $\delta$ : the cone of functions which are convex on $star^1(σ\sigma)$ for all cones, and the cone of functions which are convex on $star^1(σ\sigma)$ for all cones of codimension 1. We give nice combinatorial descriptions for these two cones given two different fan structures on the tropical linear space of complete graphs. For the complete graph $K_5$, we prove that with the finer fan subdivision the two cones are not equal, but with the coarser subdivision they are the same. This gives a negative answer to a question of Gibney-Maclagan that for the finer subdivision the two cones are the same. Soit $\Delta$ un fan, pour $\sigma \in \Delta$ nous définissons $star^1(\sigma )$ comme l'ensemble de cônes qui contiennent $\sigma$ dont la dimension est un de plus que la dimension de $\sigma$ . Nous étudions deux cônes d'applications linéaires par morceaux définis sur $\Delta$ : le cône de fonctions convexes sur$star^1(\sigma )$, où $\sigma \in \Delta$ est un cône quelconque, et le cône de fonctions convexes sur $star^1(σ\sigma)$ où σ est un cône de codimension 1. étant donnés deux structures sur l'espace tropical linéaire de graphes complets, nous donnons de beaux descriptions combinatoires des cônes décrits en haut. Pour le graphe complet $K_5$, on démontre que avec la subdivision en fans plus fine, les deux cônes sont différentes, mais avec la subdivision plus gros ils sont cônes sont les mêmes. Ce résultant réponde négativement une question de Gibney-Maclagan.

Author(s):  
Arturo Sarmiento-Reyes ◽  
Luis Hernandez-Martinez ◽  
Miguel Angel Gutierrez de Anda ◽  
Francisco Javier Castro Gonzalez

We describe a sense in which mesh duality is equivalent to Legendre duality. That is, a general pair of meshes, which satisfy a definition of duality for meshes, are shown to be the projection of a pair of piecewise linear functions that are dual to each other in the sense of a Legendre dual transformation. In applications the latter functions can be a tangent plane approximation to a smoother function, and a chordal plane approximation to its Legendre dual. Convex examples include one from meteorology, and also the relation between the Delaunay mesh and the Voronoi tessellation. The latter are shown to be the projections of tangent plane and chordal approximations to the same paraboloid.


2004 ◽  
Vol 27 (6) ◽  
pp. 1017-1027 ◽  
Author(s):  
Michael A. Bolender ◽  
David B. Doman

Algorithms ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 166 ◽  
Author(s):  
Andreas Griewank ◽  
Andrea Walther

For piecewise linear functions f : R n ↦ R we show how their abs-linear representation can be extended to yield simultaneously their decomposition into a convex f ˇ and a concave part f ^ , including a pair of generalized gradients g ˇ ∈ R n ∋ g ^ . The latter satisfy strict chain rules and can be computed in the reverse mode of algorithmic differentiation, at a small multiple of the cost of evaluating f itself. It is shown how f ˇ and f ^ can be expressed as a single maximum and a single minimum of affine functions, respectively. The two subgradients g ˇ and − g ^ are then used to drive DCA algorithms, where the (convex) inner problem can be solved in finitely many steps, e.g., by a Simplex variant or the true steepest descent method. Using a reflection technique to update the gradients of the concave part, one can ensure finite convergence to a local minimizer of f, provided the Linear Independence Kink Qualification holds. For piecewise smooth objectives the approach can be used as an inner method for successive piecewise linearization.


Sign in / Sign up

Export Citation Format

Share Document