scholarly journals Some results on counting roots of polynomials and the Sylvester resultant.

2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Michael Monagan ◽  
Baris Tuncer

International audience We present two results, the first on the distribution of the roots of a polynomial over the ring of integers modulo n and the second on the distribution of the roots of the Sylvester resultant of two multivariate polynomials. The second result has application to polynomial GCD computation and solving polynomial diophantine equations.

2018 ◽  
Vol 10 (6) ◽  
pp. 91
Author(s):  
Harry Wiggins ◽  
Ansie Harding ◽  
Johann Engelbrecht

One of the problems encountered when teaching complex numbers arises from an inability to visualise the complex roots, the so-called "imaginary" roots of a polynomial. Being four dimensional, it is problematic to visualize graphs and roots of polynomials with complex coefficients in spite of many attempts through centuries. An innovative way is described to visualize the graphs and roots of functions, by restricting the domain of the complex function to those complex numbers that map onto real values, leading to the concept of three dimensional sibling curves. Using this approach we see that a parabola is but a singular case of a complex quadratic.  We see that sibling curves of a complex quadratic lie on a three-dimensional hyperbolic paraboloid. Finally, we show that the restriction to a real range causes no loss of generality.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Sheng Chen ◽  
Nan Li ◽  
Steven V Sam

International audience Let $P$ be a polytope with rational vertices. A classical theorem of Ehrhart states that the number of lattice points in the dilations $P(n) = nP$ is a quasi-polynomial in $n$. We generalize this theorem by allowing the vertices of $P(n)$ to be arbitrary rational functions in $n$. In this case we prove that the number of lattice points in $P(n)$ is a quasi-polynomial for $n$ sufficiently large. Our work was motivated by a conjecture of Ehrhart on the number of solutions to parametrized linear Diophantine equations whose coefficients are polynomials in $n$, and we explain how these two problems are related. Soit $P$ un polytope avec sommets rationelles. Un théorème classique des Ehrhart déclare que le nombre de points du réseau dans les dilatations $P(n) = nP$ est un quasi-polynôme en $n$. Nous généralisons ce théorème en permettant à des sommets de $P(n)$ comme arbitraire fonctions rationnelles en $n$. Dans ce cas, nous prouvons que le nombre de points du réseau en $P(n)$ est une quasi-polynôme pour $n$ assez grand. Notre travail a été motivée par une conjecture d'Ehrhart sur le nombre de solutions à linéaire paramétrée Diophantine équations dont les coefficients sont des polyômes en $n$, et nous expliquer comment ces deux problèmes sont liés.


2008 ◽  
Vol Volume 31 ◽  
Author(s):  
Ajai Choudhry ◽  
Jaroslaw Wroblewski

International audience This paper is concerned with the system of simultaneous diophantine equations $\sum_{i=1}^6A_i^k=\sum_{i=1}^6B_i^k$ for $k=2, 4, 6, 8, 10.$ Till now only two numerical solutions of the system are known. This paper provides an infinite family of solutions. It is well-known that solutions of the above system lead to ideal solutions of the Tarry-Escott Problem of degree $11$, that is, of the system of simultaneous equations, $\sum_{i=1}^{12}a_i^k=\sum_{i=1}^{12}b_i^k$ for $k=1, 2, 3,\ldots,11.$ We use one of the ideal solutions to prove new results on sums of $13^{th}$ powers. In particular, we prove that every integer can be expressed as a sum or difference of at most $27$ thirteenth powers of positive integers.


1999 ◽  
Vol 42 (1) ◽  
pp. 127-141
Author(s):  
Dimitrios Poulakis

Let K be an algebraic number field with ring of integers OK and f(X) ∈ OK[X]. In this paper we establish improved explicit upper bounds for the size of solutions in OK, of diophantine equations Y2 = f(X), where f(X) has at least three roots of odd order, and Ym = f(X), where m is an integer ≥ 3 and f(X) has at least two roots of order prime to m.


2007 ◽  
Vol 14 (04) ◽  
pp. 661-668 ◽  
Author(s):  
Kejian Xu ◽  
Yongliang Wang

In this paper, it is proved that the Diophantine equation x4-y4 =z2 has no non-trivial coprime solutions in the rings of integers of quadratic imaginary fields [Formula: see text] for d=11, 19, 43, 67, 163, which implies that the Fermat equation x4+y4 =z4 has no non-trivial solutions in these fields either. Then all the solutions of the Pocklington equation x4-x2y2+y4 =(-1)σz2 (σ =0 or 1) in the ring of integers of [Formula: see text] are determined, and as an application, the result is applied to K2 of a field.


2020 ◽  
Vol Volume 42 - Special... ◽  
Author(s):  
Rob Tijdeman

International audience This paper aims to show two things. Firstly the importance of Alan Baker's work on linear forms in logarithms for the development of the theory of exponential Diophantine equations. Secondly how this theory is the culmination of a series of greater and smaller discoveries.


2014 ◽  
Vol Vol. 16 no. 2 (PRIMA 2013) ◽  
Author(s):  
L. Sunil Chandran ◽  
Deepak Rajendraprasad ◽  
Nitin Singh

Special issue PRIMA 2013 International audience Let ℤ<sub>n</sub> denote the ring of integers modulo n. A permutation of ℤ<sub>n</sub> is a sequence of n distinct elements of ℤ<sub>n</sub>. Addition and subtraction of two permutations is defined element-wise. In this paper we consider two extremal problems on permutations of ℤ<sub>n</sub>, namely, the maximum size of a collection of permutations such that the sum of any two distinct permutations in the collection is again a permutation, and the maximum size of a collection of permutations such that no sum of two distinct permutations in the collection is a permutation. Let the sizes be denoted by s(n) and t(n) respectively. The case when n is even is trivial in both the cases, with s(n)=1 and t(n)=n!. For n odd, we prove (nφ(n))/2<sup>k</sup>≤s(n)≤n!· 2<sup>-(n-1)/2</sup>((n-1)/2)! and 2<sup>(n-1)/2</sup>·(n-1 / 2)!≤t(n)≤ 2<sup>k</sup>·(n-1)!/φ(n), where k is the number of distinct prime divisors of n and φ is the Euler's totient function.


2010 ◽  
Vol DMTCS Proceedings vol. AM,... (Proceedings) ◽  
Author(s):  
Philippe Jacquet ◽  
Charles Knessl ◽  
Wojciech Szpankowski

International audience The method of types is one of the most popular techniques in information theory and combinatorics. Two sequences of equal length have the same type if they have identical empirical distributions. In this paper, we focus on Markov types, that is, sequences generated by a Markov source (of order one). We note that sequences having the same Markov type share the same so called $\textit{balanced frequency matrix}$ that counts the number of distinct pairs of symbols. We enumerate the number of Markov types for sequences of length $n$ over an alphabet of size $m$. This turns out to coincide with the number of the balanced frequency matrices as well as with the number of special $\textit{linear diophantine equations}$, and also balanced directed multigraphs. For fixed $m$ we prove that the number of Markov types is asymptotically equal to $d(m) \frac{n^{m^{2-m}}}{(m^2-m)!}$, where $d(m)$ is a constant for which we give an integral representation. For $m \to \infty$ we conclude that asymptotically the number of types is equivalent to $\frac{\sqrt{2}m^{3m/2} e^{m^2}}{m^{2m^2} 2^m \pi^{m/2}} n^{m^2-m}$ provided that $m=o(n^{1/4})$ (however, our techniques work for $m=o(\sqrt{n})$). These findings are derived by analytical techniques ranging from multidimensional generating functions to the saddle point method.


2010 ◽  
Vol Volume 33 ◽  
Author(s):  
Ajai Choudhry

International audience This paper gives a complete four-parameter solution of the simultaneous diophantine equations $x+y+z=u+v+w, x^3+y^3+z^3=u^3+v^3+w^3,$ in terms of quadratic polynomials in which each parameter occurs only in the first degree. This solution is much simpler than the complete solutions of these equations published earlier. This simple solution is used to obtain solutions of several related diophantine problems. For instance, the paper gives a parametric solution of the arbitrarily long simultaneous diophantine chains of the type $x^k_1+y^k_1+z^k_1=x^k_2+y^k_2+z^k_2=\ldots=x^k_n+y^k_n+z^k_n=\ldots,~~k=1,3.$ Further, the complete ideal symmetric solution of the Tarry-Escott problem of degree $4$ is obtained, and it is also shown that any arbitrarily given integer can be expressed as the sum of four distinct nonzero integers such that the sum of the cubes of these four integers is equal to the cube of the given integer.


Sign in / Sign up

Export Citation Format

Share Document