simultaneous diophantine equations
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

2010 ◽  
Vol Volume 33 ◽  
Author(s):  
Ajai Choudhry

International audience This paper gives a complete four-parameter solution of the simultaneous diophantine equations $x+y+z=u+v+w, x^3+y^3+z^3=u^3+v^3+w^3,$ in terms of quadratic polynomials in which each parameter occurs only in the first degree. This solution is much simpler than the complete solutions of these equations published earlier. This simple solution is used to obtain solutions of several related diophantine problems. For instance, the paper gives a parametric solution of the arbitrarily long simultaneous diophantine chains of the type $x^k_1+y^k_1+z^k_1=x^k_2+y^k_2+z^k_2=\ldots=x^k_n+y^k_n+z^k_n=\ldots,~~k=1,3.$ Further, the complete ideal symmetric solution of the Tarry-Escott problem of degree $4$ is obtained, and it is also shown that any arbitrarily given integer can be expressed as the sum of four distinct nonzero integers such that the sum of the cubes of these four integers is equal to the cube of the given integer.


2008 ◽  
Vol Volume 31 ◽  
Author(s):  
Ajai Choudhry ◽  
Jaroslaw Wroblewski

International audience This paper is concerned with the system of simultaneous diophantine equations $\sum_{i=1}^6A_i^k=\sum_{i=1}^6B_i^k$ for $k=2, 4, 6, 8, 10.$ Till now only two numerical solutions of the system are known. This paper provides an infinite family of solutions. It is well-known that solutions of the above system lead to ideal solutions of the Tarry-Escott Problem of degree $11$, that is, of the system of simultaneous equations, $\sum_{i=1}^{12}a_i^k=\sum_{i=1}^{12}b_i^k$ for $k=1, 2, 3,\ldots,11.$ We use one of the ideal solutions to prove new results on sums of $13^{th}$ powers. In particular, we prove that every integer can be expressed as a sum or difference of at most $27$ thirteenth powers of positive integers.


2003 ◽  
Vol 108 (4) ◽  
pp. 369-377
Author(s):  
Shin-ichi Katayama ◽  
Claude Levesque

1999 ◽  
Vol 126 (2) ◽  
pp. 209-221 ◽  
Author(s):  
W. Y. TSUI ◽  
T. D. WOOLEY

The problem of constructing non-diagonal solutions to systems of symmetric diagonal equations has attracted intense investigation for centuries (see [5, 6] for a history of such problems) and remains a topic of current interest (see, for example, [2–4]). In contrast, the problem of bounding the number of such non-diagonal solutions has commanded attention only comparatively recently, the first non-trivial estimates having been obtained around thirty years ago through the sieve methods applied by Hooley [10, 11] and Greaves [7] in their investigations concerning sums of two kth powers. As a further contribution to the problem of establishing the paucity of non-diagonal solutions in certain systems of diagonal diophantine equations, in this paper we bound the number of non-diagonal solutions of a system of simultaneous quadratic and biquadratic equations. Let S(P) denote the number of solutions of the simultaneous diophantine equationsformula herewith 0[les ]xi, yi[les ]P(1[les ]i[les ]3), and let T(P) denote the corresponding number of solutions with (x1, x2, x3) a permutation of (y1, y2, y3). In Section 4 below we establish the upper and lower bounds for S(P)−T(P) contained in the following theorem.


Sign in / Sign up

Export Citation Format

Share Document