scholarly journals Generalized Ehrhart polynomials

2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Sheng Chen ◽  
Nan Li ◽  
Steven V Sam

International audience Let $P$ be a polytope with rational vertices. A classical theorem of Ehrhart states that the number of lattice points in the dilations $P(n) = nP$ is a quasi-polynomial in $n$. We generalize this theorem by allowing the vertices of $P(n)$ to be arbitrary rational functions in $n$. In this case we prove that the number of lattice points in $P(n)$ is a quasi-polynomial for $n$ sufficiently large. Our work was motivated by a conjecture of Ehrhart on the number of solutions to parametrized linear Diophantine equations whose coefficients are polynomials in $n$, and we explain how these two problems are related. Soit $P$ un polytope avec sommets rationelles. Un théorème classique des Ehrhart déclare que le nombre de points du réseau dans les dilatations $P(n) = nP$ est un quasi-polynôme en $n$. Nous généralisons ce théorème en permettant à des sommets de $P(n)$ comme arbitraire fonctions rationnelles en $n$. Dans ce cas, nous prouvons que le nombre de points du réseau en $P(n)$ est une quasi-polynôme pour $n$ assez grand. Notre travail a été motivée par une conjecture d'Ehrhart sur le nombre de solutions à linéaire paramétrée Diophantine équations dont les coefficients sont des polyômes en $n$, et nous expliquer comment ces deux problèmes sont liés.

2010 ◽  
Vol DMTCS Proceedings vol. AM,... (Proceedings) ◽  
Author(s):  
Philippe Jacquet ◽  
Charles Knessl ◽  
Wojciech Szpankowski

International audience The method of types is one of the most popular techniques in information theory and combinatorics. Two sequences of equal length have the same type if they have identical empirical distributions. In this paper, we focus on Markov types, that is, sequences generated by a Markov source (of order one). We note that sequences having the same Markov type share the same so called $\textit{balanced frequency matrix}$ that counts the number of distinct pairs of symbols. We enumerate the number of Markov types for sequences of length $n$ over an alphabet of size $m$. This turns out to coincide with the number of the balanced frequency matrices as well as with the number of special $\textit{linear diophantine equations}$, and also balanced directed multigraphs. For fixed $m$ we prove that the number of Markov types is asymptotically equal to $d(m) \frac{n^{m^{2-m}}}{(m^2-m)!}$, where $d(m)$ is a constant for which we give an integral representation. For $m \to \infty$ we conclude that asymptotically the number of types is equivalent to $\frac{\sqrt{2}m^{3m/2} e^{m^2}}{m^{2m^2} 2^m \pi^{m/2}} n^{m^2-m}$ provided that $m=o(n^{1/4})$ (however, our techniques work for $m=o(\sqrt{n})$). These findings are derived by analytical techniques ranging from multidimensional generating functions to the saddle point method.


In this article, we prove that the non-linear Diophantine equation 𝑦 = 2𝑥1𝑥2 …𝑥𝑘 + 1; 𝑘 ≥ 2, 𝑥𝑖 ∈ 𝑃 − {2}, 𝑥𝑖′𝑠 are distinct and P is the set of all prime numbers has an infinite number of solutions using the notion of a periodic sequence. Then we also obtained certain results concerning Euler Mullin sequence.


1999 ◽  
Vol 126 (2) ◽  
pp. 209-221 ◽  
Author(s):  
W. Y. TSUI ◽  
T. D. WOOLEY

The problem of constructing non-diagonal solutions to systems of symmetric diagonal equations has attracted intense investigation for centuries (see [5, 6] for a history of such problems) and remains a topic of current interest (see, for example, [2–4]). In contrast, the problem of bounding the number of such non-diagonal solutions has commanded attention only comparatively recently, the first non-trivial estimates having been obtained around thirty years ago through the sieve methods applied by Hooley [10, 11] and Greaves [7] in their investigations concerning sums of two kth powers. As a further contribution to the problem of establishing the paucity of non-diagonal solutions in certain systems of diagonal diophantine equations, in this paper we bound the number of non-diagonal solutions of a system of simultaneous quadratic and biquadratic equations. Let S(P) denote the number of solutions of the simultaneous diophantine equationsformula herewith 0[les ]xi, yi[les ]P(1[les ]i[les ]3), and let T(P) denote the corresponding number of solutions with (x1, x2, x3) a permutation of (y1, y2, y3). In Section 4 below we establish the upper and lower bounds for S(P)−T(P) contained in the following theorem.


2019 ◽  
Vol 234 (5) ◽  
pp. 291-299
Author(s):  
Anton Shutov ◽  
Andrey Maleev

Abstract A new approach to the problem of coordination sequences of periodic structures is proposed. It is based on the concept of layer-by-layer growth and on the study of geodesics in periodic graphs. We represent coordination numbers as sums of so called sector coordination numbers arising from the growth polygon of the graph. In each sector we obtain a canonical form of the geodesic chains and reduce the calculation of the sector coordination numbers to solution of the linear Diophantine equations. The approach is illustrated by the example of the 2-homogeneous kra graph. We obtain three alternative descriptions of the coordination sequences: explicit formulas, generating functions and recurrent relations.


2018 ◽  
Vol 18 (2) ◽  
pp. 185-188
Author(s):  
Satish Kumar ◽  
◽  
Deepak Gupta ◽  
Hari Kishan

2013 ◽  
Vol Vol. 15 no. 2 (Combinatorics) ◽  
Author(s):  
Adrien Boussicault

Combinatorics International audience We consider the family of rational functions ψw= ∏( xwi - xwi+1 )-1 indexed by words with no repetition. We study the combinatorics of the sums ΨP of the functions ψw when w describes the linear extensions of a given poset P. In particular, we point out the connexions between some transformations on posets and elementary operations on the fraction ΨP. We prove that the denominator of ΨP has a closed expression in terms of the Hasse diagram of P, and we compute its numerator in some special cases. We show that the computation of ΨP can be reduced to the case of bipartite posets. Finally, we compute the numerators associated to some special bipartite graphs as Schubert polynomials.


Sign in / Sign up

Export Citation Format

Share Document