scholarly journals On A Single Server Queue with Two-Stage First Essential Service Followed by One of the Two Types of Additional Optional Service and Optional Deterministic Server Vacations

Author(s):  
Kailash C. Madan

We study the steady state behavior of a batch arrival single server queue in which the first service consisting of two stages with general service times G1 and G2 is compulsory. After completion of the two stages of the first essential service, a customer has the option of choosing one of the two types of additional service with respective general service times G1 and G2 . Just after completing both stages of first essential service with or without one of the two types of additional optional service, the server has the choice of taking an optional deterministic vacation of fixed (constant) length of time. We obtain steady state probability generating functions for the queue size for various states of the system at a random epoch of time in explicit and closed forms. The steady state results of some interesting special cases have been derived from the main results.

1974 ◽  
Vol 11 (03) ◽  
pp. 612-617 ◽  
Author(s):  
Lajos Takács

The limiting distributions of the actual waiting time and the virtual waiting time are determined for a single-server queue with Poisson input and general service times in the case where there are two types of services and no customer can stay in the system longer than an interval of length m.


1974 ◽  
Vol 11 (3) ◽  
pp. 612-617 ◽  
Author(s):  
Lajos Takács

The limiting distributions of the actual waiting time and the virtual waiting time are determined for a single-server queue with Poisson input and general service times in the case where there are two types of services and no customer can stay in the system longer than an interval of length m.


1994 ◽  
Vol 31 (A) ◽  
pp. 131-156 ◽  
Author(s):  
Peter W. Glynn ◽  
Ward Whitt

We consider the standard single-server queue with unlimited waiting space and the first-in first-out service discipline, but without any explicit independence conditions on the interarrival and service times. We find conditions for the steady-state waiting-time distribution to have asymptotics of the form x–1 log P(W> x) → –θ ∗as x → ∞for θ ∗ > 0. We require only stationarity of the basic sequence of service times minus interarrival times and a Gärtner–Ellis condition for the cumulant generating function of the associated partial sums, i.e. n–1 log E exp (θSn) → ψ (θ) as n → ∞, plus regularity conditions on the decay rate function ψ. The asymptotic decay rate θ is the root of the equation ψ (θ) = 0. This result in turn implies a corresponding asymptotic result for the steady-state workload in a queue with general non-decreasing input. This asymptotic result covers the case of multiple independent sources, so that it provides additional theoretical support for a concept of effective bandwidths for admission control in multiclass queues based on asymptotic decay rates.


1994 ◽  
Vol 31 (A) ◽  
pp. 131-156 ◽  
Author(s):  
Peter W. Glynn ◽  
Ward Whitt

We consider the standard single-server queue with unlimited waiting space and the first-in first-out service discipline, but without any explicit independence conditions on the interarrival and service times. We find conditions for the steady-state waiting-time distribution to have asymptotics of the form x –1 log P(W > x) → –θ ∗as x → ∞for θ ∗ > 0. We require only stationarity of the basic sequence of service times minus interarrival times and a Gärtner–Ellis condition for the cumulant generating function of the associated partial sums, i.e. n –1 log E exp (θSn ) → ψ (θ) as n → ∞, plus regularity conditions on the decay rate function ψ. The asymptotic decay rate θ is the root of the equation ψ (θ) = 0. This result in turn implies a corresponding asymptotic result for the steady-state workload in a queue with general non-decreasing input. This asymptotic result covers the case of multiple independent sources, so that it provides additional theoretical support for a concept of effective bandwidths for admission control in multiclass queues based on asymptotic decay rates.


1987 ◽  
Vol 24 (03) ◽  
pp. 758-767
Author(s):  
D. Fakinos

This paper studies theGI/G/1 queueing system assuming that customers have service times depending on the queue size and also that they are served in accordance with the preemptive-resume last-come–first-served queue discipline. Expressions are given for the limiting distribution of the queue size and the remaining durations of the corresponding services, when the system is considered at arrival epochs, at departure epochs and continuously in time. Also these results are applied to some particular cases of the above queueing system.


1965 ◽  
Vol 2 (2) ◽  
pp. 462-466 ◽  
Author(s):  
A. M. Hasofer

In a previous paper [2] the author has studied the single-server queue with non-homogeneous Poisson input and general service time, with particular emphasis on the case when the parameter of the Poisson input is of the form


Sign in / Sign up

Export Citation Format

Share Document