On optional deterministic server vacations in a single server queue providing two types of first essential service followed by two types of additional optional service

2018 ◽  
Vol 12 (4) ◽  
pp. 147-159
Author(s):  
Kailash C. Madan
Author(s):  
Kailash C. Madan

We study the steady state behavior of a batch arrival single server queue in which the first service consisting of two stages with general service times G1 and G2 is compulsory. After completion of the two stages of the first essential service, a customer has the option of choosing one of the two types of additional service with respective general service times G1 and G2 . Just after completing both stages of first essential service with or without one of the two types of additional optional service, the server has the choice of taking an optional deterministic vacation of fixed (constant) length of time. We obtain steady state probability generating functions for the queue size for various states of the system at a random epoch of time in explicit and closed forms. The steady state results of some interesting special cases have been derived from the main results.


1987 ◽  
Vol 24 (03) ◽  
pp. 758-767
Author(s):  
D. Fakinos

This paper studies theGI/G/1 queueing system assuming that customers have service times depending on the queue size and also that they are served in accordance with the preemptive-resume last-come–first-served queue discipline. Expressions are given for the limiting distribution of the queue size and the remaining durations of the corresponding services, when the system is considered at arrival epochs, at departure epochs and continuously in time. Also these results are applied to some particular cases of the above queueing system.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Siew Khew Koh ◽  
Ah Hin Pooi ◽  
Yi Fei Tan

Consider the single server queue in which the system capacity is infinite and the customers are served on a first come, first served basis. Suppose the probability density functionf(t)and the cumulative distribution functionF(t)of the interarrival time are such that the ratef(t)/1-F(t)tends to a constant ast→∞, and the rate computed from the distribution of the service time tends to another constant. When the queue is in a stationary state, we derive a set of equations for the probabilities of the queue length and the states of the arrival and service processes. Solving the equations, we obtain approximate results for the stationary probabilities which can be used to obtain the stationary queue length distribution and waiting time distribution of a customer who arrives when the queue is in the stationary state.


Sign in / Sign up

Export Citation Format

Share Document