scholarly journals Applied Systems Theory: Wind Turbine Output Power Prediction based on Wind Energy Utilization Coefficient

Author(s):  
Xiaotong Wang ◽  
Wangqiang Niu ◽  
Wei Gu

The output power of a wind turbine is the most critical variable reflecting the operating status of the turbine. To improve the interpretability of the prediction model, a segmented output power method based on wind energy utilization coefficient is established. First, the wind energy conversion system of the wind turbine is given, and the SCADA data of a wind turbine is visually analyzed. Then it is proposed to separate the data into three groups according to different operating regions of wind turbines: the Maximum Power Point Tracking region, the rotator speed control region, and the power control region. In the Maximum Power Point Tracking region, wind energy utilization coefficient is found by a fitted cubic polynomial of the tip speed ratio. In the rotator speed control region, a modeling method for determining wind energy utilization coefficient through dynamic labels is designed. In the power control region, the output power is kept at the rated value. Finally, the 3 models are connected so that time-series data can be handled. The SCADA data of a 2.1MW wind turbine is used to verify the above models. The performance of these models is given in the form of Root Mean Square Error, indicating that the output power predicted by this method has good accuracy.The segmented output power model based on wind energy utilization coefficient can simulate the operation process of wind turbines, and has good accuracy and interpretability.

Author(s):  
Leonardo Candido Corrêa ◽  
João Manoel Lenz ◽  
Cláudia Garrastazu Ribeiro ◽  
Felix Alberto Farret

An emulator for the nonconventional Magnus wind turbine was designed and developed in this study. A brief discussion is made of this special case of horizontal axis wind generator and of the main physics principles involving the Magnus phenomenon. A mathematical model was used to emulate the static behavior of the Magnus wind turbine and a detailed analysis is presented about its peculiar rotating cylinder characteristics. Based on the relationship between cylinder blade rotation and power coefficient, a hill climb search algorithm was developed to perform maximum power point tracking. The impact of the cylinder's rotation speed on the turbine net output power was evaluated. A controlled direct current motor was used to provide torque, based on the Magnus turbine model, and drive a permanent magnet synchronous generator (PMSG); the latter was controlled by a buck converter in order to extract the maximum generated power (MGP). Simulations of the Magnus wind turbine model and its maximum power point tracking (MPPT) control are also presented. A prototype of the proposed emulator was developed and operated by a user-friendly LabVIEW interface. Measurements of the power delivered to the load were acquired for different wind speeds; these results were analyzed and compared with simulated values showing a good behavior of the emulator with respect to the turbine model. The proposed control technique for maximizing the output power was validated by emulated results. The modeling and development of the Magnus turbine emulator also serve to encourage further studies on generation and control with this wind machine.


Vestnik MEI ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 44-55
Author(s):  
Yusong Yang ◽  
◽  
Evgeniy V. Solomin ◽  
Gleb N. Ryavkin ◽  
◽  
...  

Owing to its being an important component of renewable energy, wind energy is a kind of power generation method with the most mature, highly developed technologies and broad commercial prospects. The stable and efficient conversion of wind energy by wind turbines depends not only on the reliability of the wind power generation equipment itself, but also on the wind turbine control system, which, in turn, contributes to long-term safe and reliable operation of the wind farm fleet. It is exactly the wind turbine control system that is the main subject of this study. The key to efficient and stable operation of the entire wind energy conversion system is the control technology, which includes yaw control, pitch angle control, and maximum power point tracking control. The active yaw control system is one of the important components of a horizontal axis wind turbine's control system. To eliminate the uncertainty of wind direction influence on the turbine power output, a composite yaw control system has been checked. By using an active yaw system and maximum power point tracking system, the turbine position and its rotation speed are adjusted to enable the wind turbine to accurately track the wind direction and capture the wind energy to the fullest extent.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3938 ◽  
Author(s):  
Ramadoni Syahputra ◽  
Indah Soesanti

This paper proposes a strategy for performance improvement of small-scale wind turbine systems using maximum power point tracking control (MPPT). In this study, wind-turbine systems which use permanent magnet synchronous generators and converter devices are modeled in Simulink-Matlab software. In order to increase the power generated, MPPT is used based on the extended perturb and observe (PO) method. This algorithm has the ability to improve the speed of the turbine without oscillation. To analyze the ability of the PO-based MPPT in maximizing output power, performance examination of wind turbine systems in Simulink-Matlab software was conducted. The study is carried out with a 3000 W wind turbine device serving various electrical loads of 50 Ω, 100 Ω, 200 Ω, and 300 Ω, and each ohm varies with a wind speed of 4, 5, 6.5, 7, 8.5, 9, and 10 m/s. The overall turbine system performance found that the maximum increase in system output power occurs when it is loaded with 200 Ω with a wind speed of 6.5 m/s. During this combination of 200 Ω and 6.5 m/s, there are high increments of output power at 135.62% caused by the installation of MPPT controllers, with an average output power increase of 50.77%. The results of this study proved that PO-based MPPT has successfully improved the performance of wind-turbine systems.


MethodsX ◽  
2021 ◽  
Vol 8 ◽  
pp. 101298
Author(s):  
José-Genaro González-Hernández ◽  
Rubén Salas-Cabrera ◽  
Roberto Vázquez-Bautista ◽  
Luis-Manuel Ong-de-la-Cruz

Sign in / Sign up

Export Citation Format

Share Document