scholarly journals Some Identities in Rings and Near-Rings with Derivations

2021 ◽  
Vol 45 (01) ◽  
pp. 75-80
Author(s):  
ABDELKARIM BOUA

In the present paper we investigate commutativity in prime rings and 3-prime near-rings admitting a generalized derivation satisfying certain algebraic identities. Some well-known results characterizing commutativity of prime rings and 3-prime near-rings have been generalized.

Author(s):  
Deepak Kumar ◽  
Bharat Bhushan ◽  
Gurninder S. Sandhu

Let [Formula: see text] be a prime ring with involution ∗ of the second kind. An additive mapping [Formula: see text] is called generalized derivation if there exists a unique derivation [Formula: see text] such that [Formula: see text] for all [Formula: see text] In this paper, we investigate the structure of [Formula: see text] and describe the possible forms of generalized derivations of [Formula: see text] that satisfy specific ∗-differential identities. Precisely, we study the following situations: (i) [Formula: see text] (ii) [Formula: see text] (iii) [Formula: see text] (iv) [Formula: see text] for all [Formula: see text] Moreover, we construct some examples showing that the restrictions imposed in the hypotheses of our theorems are not redundant.


2016 ◽  
Vol 45 (8) ◽  
pp. 3542-3554 ◽  
Author(s):  
S. K. Tiwari ◽  
R. K. Sharma ◽  
B. Dhara

Author(s):  
C. Jaya Subba Reddy ◽  
S. Mallikarjuna Rao ◽  
V. Vijaya Kumar

Let R be a prime ring and d a derivation on R. If is a left generalized derivation on R such that ƒ is centralizing on a left ideal U of R, then R is commutative.


2019 ◽  
Vol 12 (01) ◽  
pp. 1950001 ◽  
Author(s):  
My Abdallah Idrissi ◽  
Lahcen Oukhtite

Our purpose in this paper is to investigate commutativity of a ring with involution [Formula: see text] which admits a generalized derivation satisfying certain algebraic identities. Some well-known results characterizing commutativity of prime rings have been generalized. Moreover, we provide examples to show that the assumed restrictions cannot be relaxed.


Author(s):  
Huang Shuliang

LetRbe an associative prime ring,Ua Lie ideal such thatu2∈Ufor allu∈U. An additive functionF:R→Ris called a generalized derivation if there exists a derivationd:R→Rsuch thatF(xy)=F(x)y+xd(y)holds for allx,y∈R. In this paper, we prove thatd=0orU⊆Z(R)if any one of the following conditions holds: (1)d(x)∘F(y)=0, (2)[d(x),F(y)=0], (3) eitherd(x)∘F(y)=x∘yord(x)∘F(y)+x∘y=0, (4) eitherd(x)∘F(y)=[x,y]ord(x)∘F(y)+[x,y]=0, (5) eitherd(x)∘F(y)−xy∈Z(R)ord(x)∘F(y)+xy∈Z(R), (6) either[d(x),F(y)]=[x,y]or[d(x),F(y)]+[x,y]=0, (7) either[d(x),F(y)]=x∘yor[d(x),F(y)]+x∘y=0for allx,y∈U.


Author(s):  
Shailesh Kumar Tiwari ◽  
Rajendra K. Sharma ◽  
Basudeb Dhara

2018 ◽  
Vol 47 (2) ◽  
pp. 800-813
Author(s):  
Mohammad Ashraf ◽  
Vincenzo De Filippis ◽  
Sajad Ahmad Pary ◽  
Shailesh Kumar Tiwari

2010 ◽  
Vol 17 (02) ◽  
pp. 295-300 ◽  
Author(s):  
Yu Wang

Let R be a prime ring with a nontrivial idempotent. In this paper, we prove that if g is an additive map of R into itself such that xg(y)z = 0 for all x, y, z ∈ R with xy = yz = 0, then g is a generalized derivation. As an application of this result, we show that every local generalized derivation in a prime ring with a nontrivial idempotent is a generalized derivation.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Shakir Ali ◽  
Husain Alhazmi ◽  
Abdul Nadim Khan ◽  
Mohd Arif Raza

AbstractLet {\mathfrak{R}} be a ring with center {Z(\mathfrak{R})}. In this paper, we study the higher-order commutators with power central values on rings and algebras involving generalized derivations. Motivated by [A. Alahmadi, S. Ali, A. N. Khan and M. Salahuddin Khan, A characterization of generalized derivations on prime rings, Comm. Algebra 44 2016, 8, 3201–3210], we characterize generalized derivations and related maps that satisfy certain differential identities on prime rings. Precisely, we prove that if a prime ring of characteristic different from two admitting generalized derivation {\mathfrak{F}} such that {([\mathfrak{F}(s^{m})s^{n}+s^{n}\mathfrak{F}(s^{m}),s^{r}]_{k})^{l}\in Z(% \mathfrak{R})} for every {s\in\mathfrak{R}}, then either {\mathfrak{F}(s)=ps} for every {s\in\mathfrak{R}} or {\mathfrak{R}} satisfies {s_{4}} and {\mathfrak{F}(s)=sp} for every {s\in\mathfrak{R}} and {p\in\mathfrak{U}}, the Utumi quotient ring of {\mathfrak{R}}. As an application, we prove that any spectrally generalized derivation on a semisimple Banach algebra satisfying the above mentioned differential identity must be a left multiplication map.


Sign in / Sign up

Export Citation Format

Share Document