scholarly journals Data Security Analysis Against Chosen Ciphertext Secure Public Key Attack Using Threshold Encryption Scheme

2021 ◽  
Vol 2 (3) ◽  
pp. 326-334
Author(s):  
Khairunas ◽  
Muhammad Zarlis ◽  
Sawaluddin

A public key encryption cryptography system can be utilized to generate ciphertext of a message using a public key. However, this public key encryption cryptography system cannot be utilized if you want to generate ciphertext using several different keys. Solving the problems above can use the Chosen Ciphertext Secure Public Key Threshold Encryption scheme but are the securities from Threshold Encryption really strong in securing messages, therefore the above problems can be analyzed for Data Security Against Chosen Ciphertext Secure Public Key Attacks Using Threshold Encryption Schemes. The work process starts from Setup which functions to generate the server's private key and public key. Then, the process is continued with ShareKeyGen which functions to generate private keys based on the user's identity. After that, the process continues with ShareVerify which serves to verify the key generated from the ShareKeyGen process. The process will be continued again with Combine which serves to generate a private key that will be used in the decryption process. After that, the process will continue with the encryption process of the secret message. The ciphertext obtained will be sent to the recipient. The receiver verifies the ciphertext by running ValidateCT. Finally, the ciphertext is decrypted by running Decrypt. The software created can be used to display the workflow process of the Threshold schema. In addition, it makes it easier to test intercepts of ciphertext messages to other users so that generic securities analysis is carried out in testing the resulting ciphertext. The results of the implementation of  Threshold Encryption algorithm scheme can protect important personal data, because it involves human rights, namely the right to access, the right to delete, the right to correct, the right to be corrected and the right to transfer personal data safely from attacks.

Informatica ◽  
2012 ◽  
Vol 23 (4) ◽  
pp. 537-562 ◽  
Author(s):  
Ting-Yi Chang ◽  
Min-Shiang Hwang ◽  
Wei-Pang Yang

2009 ◽  
Vol 20 (10) ◽  
pp. 2907-2914 ◽  
Author(s):  
Liao-Jun PANG ◽  
Hui-Xian LI ◽  
Li-Cheng JIAO ◽  
Yu-Min WANG

Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1389
Author(s):  
Jiwon Lee ◽  
Jihye Kim ◽  
Hyunok Oh

In public key broadcast encryption, anyone can securely transmit a message to a group of receivers such that privileged users can decrypt it. The three important parameters of the broadcast encryption scheme are the length of the ciphertext, the size of private/public key, and the performance of encryption/decryption. It is suggested to decrease them as much as possible; however, it turns out that decreasing one increases the other in most schemes. This paper proposes a new broadcast encryption scheme for tiny Internet of Things (IoT) equipment (BESTIE), minimizing the private key size in each user. In the proposed scheme, the private key size is O(logn), the public key size is O(logn), the encryption time per subset is O(logn), the decryption time is O(logn), and the ciphertext text size is O(r), where n denotes the maximum number of users, and r indicates the number of revoked users. The proposed scheme is the first subset difference-based broadcast encryption scheme to reduce the private key size O(logn) without sacrificing the other parameters. We prove that our proposed scheme is secure under q-Simplified Multi-Exponent Bilinear Diffie-Hellman (q-SMEBDH) in the standard model.


Sign in / Sign up

Export Citation Format

Share Document