Phenol removal from oil refinery wastewater using anaerobic stabilization pond modeling and process optimization using response surface methodology (RSM)

2017 ◽  
Vol 87 ◽  
pp. 199-208 ◽  
Author(s):  
Abdollah Dargahi ◽  
Mitra Mohammadi ◽  
Farhad Amirian ◽  
Amir Karami ◽  
Ali Almasi
2016 ◽  
Vol 112 ◽  
pp. 3132-3137 ◽  
Author(s):  
Zita Šereš ◽  
Nikola Maravić ◽  
Aleksandar Takači ◽  
Ivana Nikolić ◽  
Dragana Šoronja-Simović ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Sherif A. Younis ◽  
Waleed I. El-Azab ◽  
Nour Sh. El-Gendy ◽  
Shuokr Qarani Aziz ◽  
Yasser M. Moustafa ◽  
...  

Phenol contaminated petroleum refinery wastewater presents a great threat on water resources safety. This study investigates the effect of microwave irradiation on removal of different concentrations of phenol in an attempt for petroleum refinery wastewater treatment. The obtained results show that the MW output power and irradiation time have a significant positive effect on the removal efficiency of phenol. The kinetic reaction is significantly affected by initial MW output power and initial phenol concentrations. Response surface methodology (RSM) was employed to optimize and study the interaction effects of process parameters: MW output power, irradiation time, salinity, pH, and H2O2 concentration using central composite design (CCD). From the CCD design matrix, a quadratic model was considered as an ultimate model (R2 = 0.75) and its adequacy was justified through analysis of variance (ANOVA). The overall reaction rates were significantly enhanced in the combined MW/H2O2 system as proved by RSM. The optimum values for the design parameters of the MW/H2O2 process were evaluated giving predicted phenol removal percentage of 72.90% through RSM by differential approximation and were confirmed by experimental phenol removal of 75.70% in a batch experiment at optimum conditions of 439 W MW power, irradiation time of 24.22 min, salinity of 574 mg/L, pH 5.10, and initial H2O2 concentration of 10% (v/v).


2020 ◽  
Vol 10 (28) ◽  
Author(s):  
Ouafae Dkhissi ◽  
Mohammed Chatoui ◽  
Ahmed El Hakmaoui ◽  
Meriem Abouri ◽  
Yassine Kadmi ◽  
...  

Background. Refinement of crude vegetable oil generates a large amount of wastewater and is a source of water pollution due to the presence of surfactants and phenols. Phenols are toxic aromatic compounds that can be lethal to fauna and flora, entraining the deceleration or blocking of the self-purification of biological treatments. In addition, surfactants can limit biological processes by inhibiting microorganisms that degrade organic matter. Objectives. The aim of the present study was to evaluate the treatment of refinery rejects loaded with phenols and detergents by coagulation flocculation using cactus pads (genus Opuntia) as a bio-flocculant and 30% iron(III) chloride (FeCl3) for surfactant and phenol removal. In addition, operating costs were evaluated for these pollution mitigation methods. Methods. The effectiveness of cactus pads as a bio-flocculant and 30% FeCl3 for surfactant and phenol removal were studied using a jar test. The study was conducted on vegetable oil refinery wastewater from a refinery company in Casablanca, Morocco. Results. The pollution load in wastewater varied widely from day to day. We evaluated the effect of cactus juice and 30% FeCl3 on high and low pollution loads. Opuntia pads showed a favorable potential for the treatment of low pollution load wastewater, with 78% and 90% of surfactant and phenol removed, respectively. However, the removal of high pollution load was less effective (42% and 41% removal of surfactant and phenol, respectively). The turbidity of low and high pollution load was reduced by 98.85% and 86%, respectively. The results demonstrate that 30% FeCl3 can effectively treat both low and high pollution loads (90% and 89% phenol removal, respectively, and 90% and 70% surfactant removal, respectively (optimal concentration 1.48 g/l). The turbidity was reduced by over 96% for both high and low pollutants. Conclusions. The results of the present study indicate that cactus as a natural flocculant and reject rich in FeCl3 could be effectively used for the low-cost effective treatment of crude vegetable oil refinery rejects. Competing Interests. The authors declare no competing financial interests


Sign in / Sign up

Export Citation Format

Share Document