assisted extraction
Recently Published Documents


TOTAL DOCUMENTS

4786
(FIVE YEARS 1779)

H-INDEX

107
(FIVE YEARS 19)

2022 ◽  
Vol 371 ◽  
pp. 131192
Author(s):  
Bing Xiang ◽  
Xin Zhou ◽  
Danyang Qin ◽  
Chenyue Li ◽  
Jun Xi

Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 235
Author(s):  
Erika Dobroslavić ◽  
Maja Repajić ◽  
Verica Dragović-Uzelac ◽  
Ivona Elez Garofulić

In recent years, the market demand for products enhanced with ingredients derived from natural products, such as polyphenols, is rapidly increasing. Laurus nobilis L., known as bay, sweet bay, bay laurel, Roman laurel or daphne is an evergreen Mediterranean shrub whose leaves have traditionally been used in cuisines and folk medicine due to their beneficial health effects, which can nowadays be scientifically explained by various biological activities of the leaf extracts. Many of these activities can be attributed to phenolic compounds present in L. nobilis leaves which include flavonoids, phenolic acids, tannins (proanthocyanidins) and lignans. In order to enable efficient industrial utilization of these valuable compounds, it is crucial to establish optimal extraction procedures resulting in the highest yields and quality of the extracts. This paper offers the first systematic review of current literature on the influence of conventional and advanced extraction techniques, including microwave-assisted, ultrasound-assisted, enzyme-assisted, supercritical-CO2 and mechanochemical-assisted extraction on the phenolic content of L. nobilis leaf extracts, allowing more efficient planning of further research and simplifying the steps towards industrial utilization of this plant.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 529
Author(s):  
Marijan Marijan ◽  
Anamarija Mitar ◽  
Lejsa Jakupović ◽  
Jasna Prlić Kardum ◽  
Marijana Zovko Končić

Olive leaf is a rich source of phenolic compounds with numerous activities related to skin health and appearance. In this study, a green extraction method was developed using eco-friendly solvents: polypropylene glycol (PPG), lactic acid (LA), and water. The optimal extraction conditions were established, including solvent, extraction time, technique (magnetic stirrer vs. ultrasound-assisted extraction), and herbal material/solvent ratio. The composition of the solvent mixture was optimized using a mixture design. The content of phenolic compounds, including oleuropein and verbascoside, was determined using high-performance liquid chromatography (HPLC) and spectrophotometric methods. Using different extraction conditions, three extracts were prepared and their phytochemical compositions and antioxidant and skin-related bioactivities were investigated. The extracts were excellent inhibitors of elastase, collagenase, tyrosinase, and lipoxygenase. The best activity was shown by the extract richest in phenolics and prepared using magnetic-stirrer-assisted extraction for 20 min, with 0.8 g of herbal material extracted in 10 mL of PPG/LA/water mixture (28.6/63.6/7.8, w/w/w), closely followed by the extract prepared using the same extraction conditions but with 0.42 g of herbal material. The investigated PPG/LA/water mixtures contributed to the overall enzyme-inhibitory activity of the extracts. The prepared extracts were appropriate for direct use in cosmetic products, thus saving the time and energy consumption necessary for the evaporation of conventional solvents.


2022 ◽  
Vol 51 (4) ◽  
pp. 733-742
Author(s):  
Anastasia Novikova ◽  
Liubov Skrypnik

Introduction. Commercial pectin is usually obtained from apples or citrus fruits. However, some wild fruits, such as hawthorn, are also rich in pectin with valuable nutritional and medical properties. The research objective was to study and improve the process of combined surfactant and enzyme-assisted extraction of pectin from hawthorn fruits. Study objects and methods. The study involved a 1% solution of Polysorbate-20 surfactant and a mix of two enzymes, namely cellulase and xylanase, in a ratio of 4:1. The response surface methodology with the Box-Behnken experimental design improved the extraction parameters. The experiment featured three independent variables – temperature, time, and solvent-to-material ratio. They varied at three levels: 20, 40, and 60°C; 120, 180, and 240 min; 15, 30, and 45 mL per g. Their effect on the parameters on the pectin yield was assessed using a quadratic mathematical model based on a second order polynomial equation. Results and discussion. The response surface methodology made it possible to derive a second order polynomial regression equation that illustrated the effect of extraction parameters on the yield of polyphenols. The regression coefficient (R2 = 98.14%) and the lack-of-fit test (P > 0.05) showed a good accuracy of the model. The optimal extraction conditions were found as follows: temperature = 41°C, time = 160 min, solvent-to-material ratio = 32 mL per 1 g. Under the optimal conditions, the predicted pectin yield was 14.9%, while the experimental yield was 15.2 ± 0.4%. The content of galacturonic acid in the obtained pectin was 58.5%, while the degree of esterification was 51.5%. The hawthorn pectin demonstrated a good complex-building ability in relation to ions of copper (564 mg Cu2+/g), lead (254 mg Pb2+/g), and cobalt (120 mg Co2+/g). Conclusion. Combined surfactant and enzyme-assisted extraction made improved the extraction of pectin from hawthorn fruits. The hawthorn pectin can be used to develop new functional products.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Elizabeth Lainez-Cerón ◽  
Aurelio López-Malo ◽  
Enrique Palou ◽  
Nelly Ramírez-Corona

Abstract The dynamic performance of a microwave-assisted extraction (MAE) was studied during the extraction of eucalyptus essential oil. The effect of different process variables such as solid/liquid ratio (1:1, 1:3, or 1:5), stirring speed (0, 200, or 400 rpm), and power microwave output (360, 450, or 540 W) on obtained yield, energy requirements and environmental impact were assessed. The maximum yield was 1.26 ± 0.01% and the steam generation velocities between 4.8 and 8.8 g/min favor the extraction. In terms of environmental impact, the lowest EI99 value obtained was 6.93 ± 0.1 mPT/g. A multi-response optimization was performed to identify the operating conditions that maximize yield, while minimize energy requirements and environmental impact. Temperature dynamics and extraction kinetics were fitted to a second-order transfer function model, aimed to evaluate the role of heating patterns on the process performance. Finally, a controlled temperature experiment was carried out under the optimal conditions.


Sign in / Sign up

Export Citation Format

Share Document