Introduction. Commercial pectin is usually obtained from apples or citrus fruits. However, some wild fruits, such as hawthorn, are also rich in pectin with valuable nutritional and medical properties. The research objective was to study and improve the process of combined surfactant and enzyme-assisted extraction of pectin from hawthorn fruits.
Study objects and methods. The study involved a 1% solution of Polysorbate-20 surfactant and a mix of two enzymes, namely cellulase and xylanase, in a ratio of 4:1. The response surface methodology with the Box-Behnken experimental design improved the extraction parameters. The experiment featured three independent variables – temperature, time, and solvent-to-material ratio. They varied at three levels: 20, 40, and 60°C; 120, 180, and 240 min; 15, 30, and 45 mL per g. Their effect on the parameters on the pectin yield was assessed using a quadratic mathematical model based on a second order polynomial equation.
Results and discussion. The response surface methodology made it possible to derive a second order polynomial regression equation that illustrated the effect of extraction parameters on the yield of polyphenols. The regression coefficient (R2 = 98.14%) and the lack-of-fit test (P > 0.05) showed a good accuracy of the model. The optimal extraction conditions were found as follows: temperature = 41°C, time = 160 min, solvent-to-material ratio = 32 mL per 1 g. Under the optimal conditions, the predicted pectin yield was 14.9%, while the experimental yield was 15.2 ± 0.4%. The content of galacturonic acid in the obtained pectin was 58.5%, while the degree of esterification was 51.5%. The hawthorn pectin demonstrated a good complex-building ability in relation to ions of copper (564 mg Cu2+/g), lead (254 mg Pb2+/g), and cobalt (120 mg Co2+/g).
Conclusion. Combined surfactant and enzyme-assisted extraction made improved the extraction of pectin from hawthorn fruits. The hawthorn pectin can be used to develop new functional products.