sunflower oil
Recently Published Documents


TOTAL DOCUMENTS

2271
(FIVE YEARS 595)

H-INDEX

76
(FIVE YEARS 11)

2022 ◽  
Vol 248 ◽  
pp. 117158
Author(s):  
Bin Li ◽  
Xiaohui Dou ◽  
Kai Yu ◽  
Wei Zhang ◽  
Haojie Xu ◽  
...  

2022 ◽  
pp. 107-114
Author(s):  
Selçuk ALTAÇLI ◽  
Tuğba BİNGÖL ◽  
Suphi DENİZ ◽  
Duran BOLAT ◽  
Çağri KALE ◽  
...  

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 628
Author(s):  
Sylwia Dworakowska ◽  
Adrien Cornille ◽  
Dariusz Bogdal ◽  
Bernard Boutevin ◽  
Sylvain Caillol

High oleic sunflower oil-based polyol was obtained by thiol-ene coupling and applied in the preparation of flexible polyurethane foams. The photochemically initiated thiol-ene click reaction was carried out under UV irradiation using 2-mercaptoethanol. Bio-based polyol with hydroxyl value of 201.4 mg KOH/g was used as 30 wt% substituent of petrochemical polyether polyol in the formulations of flexible foams. Both reference foams, as well as foams modified with bio-based polyol, were formulated to have various isocyanate indices (0.85, 0.95, 1.05). Flexible foams were compared in terms of their thermomechanical properties and analyzed using FT-IR and SEM microscopy. Modification with bio-based polyol resulted in foams with superior compression properties, higher support factor, and lower resilience than reference foams. TGA and FT-IR curves confirmed the presence of urethane/urea and ether linkages in the polyurethane matrix. Moreover, double glass transition temperature corresponding to soft and hard segments of polyurethane was observed by DSC proving the phase-separated morphology.


2022 ◽  
Vol 51 (4) ◽  
pp. 674-689
Author(s):  
Elena Demchenko ◽  
Tatiana Savenkova ◽  
Inessa Mizinchikova

Introduction. The quality profile and nutritional values of cookies depend on the raw material. The research objective was to study the effect of oils and fats on the quality characteristics and storage capacity of cookies. Study objects and methods. The study involved such types of oils and fats as margarine, confectionery fat, milk fat substitute, palm oil, sunflower oil, and high oleic sunflower oil. It was based on standard methods of sensory, physicochemical, structural, and rheological analyses. Results and discussion. The experimental formulations relied on contemporary dilatory recommendations, consumer acceptability, and traditionality of sensory indicators. The mass fraction of fat was limited to ≤ 18%; added sugars – to ≤ 22%; salt – to ≤ 0.3%. For each type of oil and fat, as set of experiments was performed to define the optimal technological emulsion and dough parameters. Other aspects involved the patterns of moisture transfer, indicators of oxidative spoilage, fatty acid composition, sensory properties, physicochemical and microbiological indicators, storage capacity, etc. The samples with vegetable oils instead of fat had a lower content of saturated fatty acids, which fell from 8–9 to 2–3 g/100 g. However, the risk of oxidative spoilage increased significantly. On storage day 104, the content of linoleic acid in the samples with sunflower oil decreased from 62.0 to 60.4%, while the samples with high oleic sunflower oil maintained the same level of linoleic acid. The samples with confectionery fat and palm oil demonstrated the lowest rate of oxidative processes, while those with margarine and milk fat substitute had the best sensory profile after storage. Conclusion. The cookies with sunflower oil and high oleic sunflower oil appeared to have a shelf life of two months, while for those with milk fat substitute, margarine, palm oil, and confectionery fat it was six months. Further research should focus on various emulsifiers and antioxidants capable of forming bonds with proteins and starch fractions of flour, which could increase the resistance of liquid vegetable oils to oxidation.


2022 ◽  
Vol 72 (4) ◽  
pp. e437
Author(s):  
Ş. S. Seçilmiş ◽  
D. Koçak Yanık ◽  
S. Fadıloğlu ◽  
F. Göğüş

The factors affecting the microwave bleaching of sunflower oil and the interaction between them were investigated and optimized by response surface methodology using a three-factor five-level central composite rotatable design. Microwave power, time and the amount of bleaching clay were selected as independent variables studied in the range of 70-120 W, 2-15 min, and 0.01-0.5%. The dependent variables that measure the bleaching efficiency and oil quality were evaluated as hue angle, chroma and totox value. Optimization was carried out by minimizing totox and chroma and maximizing hue angle. Hue angle, chroma and totox were found as 96.91, 37.66 and 23.31 under optimal conditions. Optimal microwave bleaching was successfully performed by using less bleaching clay (0.4%) and a shorter time (8 min) compared to the current industrial application without any adverse effect on oil quality. Hence, microwave bleaching is thought to be an alternative method for the bleaching of edible oils.


Author(s):  
Ivan Nikolić ◽  
Jelena Jovanović ◽  
Biljana Koturević ◽  
Borivoj Adnadjević

RSC Advances ◽  
2022 ◽  
Vol 12 (3) ◽  
pp. 1535-1542
Author(s):  
Claudia V. Lopez ◽  
Ashlyn D. Smith ◽  
Rhett C. Smith

Herein we report high strength composites prepared by reaction of sulfur, plant oils (either canola oil or sunflower oil) and brown grease.


Sign in / Sign up

Export Citation Format

Share Document