scholarly journals APPLICATION OF KITAGAWA'S FUNCTIONAL INTEGRAL TO SOLUTIONS OF NON-LINEAR INTEGRAL EQUATIONS OF TWO VARIABLES

10.5109/13052 ◽  
1971 ◽  
Vol 14 (3/4) ◽  
pp. 57-60
Author(s):  
Peggy Strait
1969 ◽  
Vol 16 (4) ◽  
pp. 281-289 ◽  
Author(s):  
B. D. Sleeman

Some years ago Lambe and Ward (1) and Erdélyi (2) obtained integral equations for Heun polynomials and Heun functions. The integral equations discussed by these authors were of the formFurther, as is well known, the Heun equation includes, among its special cases, Lamé's equation and Mathieu's equation and so (1.1) may be considered a generalisation of the integral equations satisfied by Lamé polynomials and Mathieu functions. However, integral equations of the type (1.1) are not the only ones satisfied by Lamé polynomials; Arscott (3) discussed a class of non- linear integral equations associated with these functions. This paper then is concerned with discussing the existence of non-linear integral equations satisfied by solutions of Heun's equation.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Neda Khaksari ◽  
Mahmoud Paripour ◽  
Nasrin Karamikabir

In this work, a numerical method is applied for obtaining numerical solutions of Fredholm two-dimensional functional linear integral equations based on the radial basis function (RBF). To find the approximate solutions of these types of equations, first, we approximate the unknown function as a finite series in terms of basic functions. Then, by using the proposed method, we give a formula for determining the unknown function. Using this formula, we obtain a numerical method for solving Fredholm two-dimensional functional linear integral equations. Using the proposed method, we get a system of linear algebraic equations which are solved by an iteration method. In the end, the accuracy and applicability of the proposed method are shown through some numerical applications.


Sign in / Sign up

Export Citation Format

Share Document