scholarly journals Algebraic Degree Estimation of Block Ciphers Using Randomized Algorithm; Upper-Bound Integral Distinguisher

2016 ◽  
Vol 6 (3/4) ◽  
pp. 09-29
Author(s):  
Haruhisa Kosuge ◽  
Hidema Tanaka
2010 ◽  
Vol 47 (03) ◽  
pp. 611-629
Author(s):  
Mark Fackrell ◽  
Qi-Ming He ◽  
Peter Taylor ◽  
Hanqin Zhang

This paper is concerned with properties of the algebraic degree of the Laplace-Stieltjes transform of phase-type (PH) distributions. The main problem of interest is: given a PH generator, how do we find the maximum and the minimum algebraic degrees of all irreducible PH representations with that PH generator? Based on the matrix exponential (ME) order of ME distributions and the spectral polynomial algorithm, a method for computing the algebraic degree of a PH distribution is developed. The maximum algebraic degree is identified explicitly. Using Perron-Frobenius theory of nonnegative matrices, a lower bound and an upper bound on the minimum algebraic degree are found, subject to some conditions. Explicit results are obtained for special cases.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yue Leng ◽  
Jinyang Chen ◽  
Tao Xie

Permutations with low differential uniformity, high algebraic degree, and high nonlinearity over F22k can be used as the substitution boxes for many block ciphers. In this paper, several classes of low differential uniformity permutations are constructed based on the method of choosing two permutations over F22k to get the desired permutations. The resulted low differential uniformity permutations have high algebraic degrees and nonlinearities simultaneously, which provide more choices for the substitution boxes. Moreover, some numerical examples are provided to show the efficacy of the theoretical results.


2012 ◽  
Vol 546-547 ◽  
pp. 617-621
Author(s):  
Jia Liu ◽  
Yu Li Shen

S-boxes bring nonlinearity to block ciphers and strengthen their cryptographic security. A detailed analysis of the cryptographic properties of S-boxes of several block ciphers, such as SMS4, AES, Camellia and SEED, are made in this paper. Some algebraic properties of boolean function of S-boxes such as balanceness, non-linearity, algebraic degree and walsh spectrums are well investigated. We reveal the advantages and disadvantages of those S-boxes used in SMS4, AES, Camellia and SEED as compared with each other.


2001 ◽  
Vol 14 (3) ◽  
pp. 197-210 ◽  
Author(s):  
Thomas Jakobsen ◽  
Lars R. Knudsen

2010 ◽  
Vol 53 (10) ◽  
pp. 1988-1995 ◽  
Author(s):  
Bing Sun ◽  
RuiLin Li ◽  
LongJiang Qu ◽  
Chao Li

Author(s):  
Shihui Fu ◽  
Xiutao Feng ◽  
Baofeng Wu

Many block ciphers use permutations defined over the finite field F22k with low differential uniformity, high nonlinearity, and high algebraic degree to provide confusion. Due to the lack of knowledge about the existence of almost perfect nonlinear (APN) permutations over F22k, which have lowest possible differential uniformity, when k > 3, constructions of differentially 4-uniform permutations are usually considered. However, it is also very difficult to construct such permutations together with high nonlinearity; there are very few known families of such functions, which can have the best known nonlinearity and a high algebraic degree. At Crypto’16, Perrin et al. introduced a structure named butterfly, which leads to permutations over F22k with differential uniformity at most 4 and very high algebraic degree when k is odd. It is posed as an open problem in Perrin et al.’s paper and solved by Canteaut et al. that the nonlinearity is equal to 22k−1−2k. In this paper, we extend Perrin et al.’s work and study the functions constructed from butterflies with exponent e = 2i + 1. It turns out that these functions over F22k with odd k have differential uniformity at most 4 and algebraic degree k +1. Moreover, we prove that for any integer i and odd k such that gcd(i, k) = 1, the nonlinearity equality holds, which also gives another solution to the open problem proposed by Perrin et al. This greatly expands the list of differentially 4-uniform permutations with good nonlinearity and hence provides more candidates for the design of block ciphers.


2010 ◽  
Vol 47 (3) ◽  
pp. 611-629 ◽  
Author(s):  
Mark Fackrell ◽  
Qi-Ming He ◽  
Peter Taylor ◽  
Hanqin Zhang

This paper is concerned with properties of the algebraic degree of the Laplace-Stieltjes transform of phase-type (PH) distributions. The main problem of interest is: given a PH generator, how do we find the maximum and the minimum algebraic degrees of all irreducible PH representations with that PH generator? Based on the matrix exponential (ME) order of ME distributions and the spectral polynomial algorithm, a method for computing the algebraic degree of a PH distribution is developed. The maximum algebraic degree is identified explicitly. Using Perron-Frobenius theory of nonnegative matrices, a lower bound and an upper bound on the minimum algebraic degree are found, subject to some conditions. Explicit results are obtained for special cases.


Sign in / Sign up

Export Citation Format

Share Document